
phenopackets-schema Documentation
Release 10.0.0

Julius OB Jacobsen, Peter N Robinson, Christopher J Mungall

Jun 16, 2021

Contents

1 Introduction to Phenopackets 3
1.1 What is a Phenopacket? . 3
1.2 Requirement Levels . 4
1.3 Ontologies . 4
1.4 A short introduction to protobuf . 5
1.5 FHIR Implementation Guide . 8

2 Phenopacket Schema 9
2.1 Overview . 9

3 Top-Level Elements 11
3.1 Phenopacket . 11
3.2 Family . 13
3.3 Cohort . 14
3.4 Interpretation . 15

4 Phenopacket building blocks 21
4.1 Age . 21
4.2 AgeRange . 22
4.3 Biosample . 22
4.4 Disease . 26
4.5 Evidence . 27
4.6 ExternalReference . 28
4.7 Gene . 29
4.8 HtsFile . 30
4.9 Individual . 32
4.10 KaryotypicSex . 34
4.11 MetaData . 35
4.12 OntologyClass . 37
4.13 Pedigree . 37
4.14 PhenotypicFeature . 39
4.15 Procedure . 41
4.16 Resource . 42
4.17 Sex . 45
4.18 Variant . 45

5 Working with Phenopackets 51

i

5.1 Example code . 51
5.2 Security disclaimer . 78

ii

phenopackets-schema Documentation, Release 10.0.0

The goal of the phenopacket-schema is to define the phenotypic description of a patient/sample in the context of rare
disease, common/complex disease, or cancer. The schema as well as source code in Java, C++, and Python is available
from the phenopacket-schema GitHub repository.

Contents 1

https://github.com/phenopackets/phenopacket-schema

phenopackets-schema Documentation, Release 10.0.0

2 Contents

CHAPTER 1

Introduction to Phenopackets

1.1 What is a Phenopacket?

The Phenopacket Schema represents an open standard for sharing disease and phenotype information to improve our
ability to understand, diagnose, and treat both rare and common diseases. A Phenopacket links detailed phenotype
descriptions with disease, patient, and genetic information, enabling clinicians, biologists, and disease and drug re-
searchers to build more complete models of disease (see Disease for the distinction between disease and phenotypic
feature). The standard is designed to encourage wide adoption and synergy between the people, organizations and
systems that comprise the joint effort to address human disease and biological understanding.

While great strides have been made in exchange formats for sequence and variation data (e.g. Variant Call Format)
and the GA4GH Variation Representation Specification), complementary standards for phenotypes and environment
are urgently needed. For individuals with rare and undiagnosed diseases, broad adoption and appropriate utilization of
these standards could improve the speed and accuracy of diagnosis by promoting quicker, more comprehensive, and
accurate exchange of information relevant for research and medical care. The development of a clinical phenotype
data exchange standard is both necessary and timely. It is necessary because study sizes of well over 100,000 patients
are thought to be required to effectively assess the role of rare variation in common disease or to discover the genomic
basis for a substantial portion of Mendelian diseases. It is timely because studies of this power are now becoming
financially and technologically tractable.

Phenotypic abnormalities of individuals are currently described in diverse places in diverse formats: publications,
databases, health records, and even in social media. We propose that these descriptions a) contain a minimum set of
fields and b) get transmitted alongside genomic sequence data, such as in VCF, between clinics, authors, journals,
and data repositories. The structure of the data in the exchange standard will be optimized for integration from these
distributed contexts. The implementation of such a system will allow the sharing of phenotype data prospectively, as
well as retrospectively. Increasing the volume of computable data across a diversity of systems will support large-scale
computational disease analysis using the combined genotype and phenotype data.

The terms ‘disease’ and ‘phenotype’ are often conflated. The Phenopackets schema uses phenotypic feature
to refer to a phenotypic feature, such as Arachnodactyly, that is the component of a disease, such as Marfan syndrome.
The Phenopacket proposed here is designed to support deep phenotyping, a process wherein individual components
of each phenotype are observed and documented. The phenoptypes may be constitutional or those related to a sample
(such as from a biopsy).

3

https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://vr-spec.readthedocs.io/
https://hpo.jax.org/app/browse/term/HP:0001166
https://hpo.jax.org/app/browse/disease/OMIM:154700
https://www.ncbi.nlm.nih.gov/pubmed/22504886

phenopackets-schema Documentation, Release 10.0.0

1.2 Requirement Levels

The schema is formally defined using protobuf3. In protobuf3, all elements are optional, and so there is no mechanism
within protobuf to declare that a certain field is required. The Phenopacket schema does require some fields to be
present and in some cases additionally requires that these fields have a certain format (syntax) or intended meaning
(semantics). Software that uses Phenopackets should check the validity of the data with other means. We provide a Java
implementation called Phenopacket Validator that tests Phenopackets (and related messages including Family, Cohort,
and Biosample messages) for validity. Application code may additionally check for application-specific criteria.

The Phenopacket schema uses three requirement levels. The required/recommended/optional designations are
phenopacket-specific extensions used in the schema only (not code) and are not supported by protobuf.

1.2.1 Required

If a field is required, its presence is an absolute requirement of the specification, failing which the entire phenopacket
is regarded as malformed. This corresponds to the key words MUST, REQUIRED, and SHALL in RFC2119.

Validation software must emit an error if a required field is missing. We note that natively protobuf messages never
return a null pointer, and so if a field is missing it will be an empty string, a zero, or default instance depending on the
datatype. Therefore, in practive validation software does not need to check for null pointers.

1.2.2 Recommended

A field is not absolutely required, or there are valid reasons in particular circumstances that the field does not apply
to the intended use case of the Phenopacket. This corresponds to the key woirds SHOULD and RECOMMENDED in
RFC2119. For example, a variant may be associated with an id that can be useful to have but is not necessary for an
analysis. The variant NM_000138.4:c.*2024A>G is associated with the id rs558488257.

Validation software may emit a warning if a recommended field is missing.

1.2.3 Optional

A field is truly optional. This category can be applied to fields that are only useful for a certain type of data. For
instance, the background field of the variant message is only used for Phenopackets that describe animal models
of disease.

The general-purpose validator must not emit a warning about these fields whether or not they are present. It may
be appropriate for application-specific validators to emit a warning or even an error if a certain optional field is not
present.

1.3 Ontologies

A terminology is a set of prefered or official terms in a domain. One of the most important terminologies for in-
formation retrieval in the medical domain is the Medical Subject Headings (MeSH), which is used for indexing and
searching PubMed.

Ontologies differ from terminologies in that ontologies define relationships between concepts in a way that allows
computational logical reasoning. A short introduction is available in this recent review.

The phenopacket schema requires the use of a common ontology, a logically defined hierarchy of terms, that allows
sophisticated algorithmic analysis over medically relevant abnormalities. The National Cancer institute’s Thesaurus

4 Chapter 1. Introduction to Phenopackets

https://github.com/phenopackets/phenopacket-validator
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt
https://www.ncbi.nlm.nih.gov/snp/rs558488257
https://www.ncbi.nlm.nih.gov/pubmed/30304648
http://www.obofoundry.org/ontology/ncit.html
http://www.obofoundry.org/ontology/ncit.html

phenopackets-schema Documentation, Release 10.0.0

(NCIt) is used for cancer biosamples, and is the de facto standard for cancer knowledge representation and regulatory
submission. The Human Phenotype Ontology (HPO) was built

for genomic diagnostics, translational research, genomic matchmaking, and

systems biology applications in the field of rare disease and other fields of medicine. The HPO is developed in the
context of the Monarch Initiative, an international team of computer scientists, clinicians, and biologists in the United
States, Europe, and Australia; HPO is being translated into multiple languages to support international interoperability.
Due to its extensive phenotypic coverage beyond other terminologies, HPO has recently been integrated into the
Unified Medical Language System (UMLS) to support deep phenotyping in a variety of mainstream health care IT
systems.

1.4 A short introduction to protobuf

Phenopackets schema uses protobuf, an exchange format developed in 2008 by Google. We refer readers to the
excellent Wikipedia page on Protobuf and to Google’s documentation for details. This page intends to get curious
readers who are unfamiliar with protobuf up to speed with the main aspects of this technology, but it is not necessary
to understand protobuf to use the phenopacket schema.

Google initially developed Protocol Buffers (protobuf) for internal use, but now has provided a code generator for
multiple languages under an open source license. In this documentation, we will demonstrate use of phenopackets-
schema with Java, but all of the features are available in any of the languages that protobuf works with including C++
and Python.

The major advantages of protobuf are that it is language-neutral, faster than many other schema languages such as
XML and JSON, and can be simpler to use because of features such as automatic validation of data objects.

Protobuf forsees that data structures (so-called messages) are defined in a definition file (with the suffix .proto) and
compiled to generate code that is invoked by the sender or recipient of the data to encode/decode the data.

1.4.1 Installing protobuf

The following exercise is not necessary to use phenopackets-schema, but is intended to build intuition for how protobuf
works. We first need to install protobuf (Note that these intructions are for this tutorial only. The maven system will
automatically pull in protobuf for phenopackets schema). We show one simple way of installing protobuf on a linux
system in the following.

1. Download the source code from the protobuf GitHub page. Most users should download the latest tar.gz archive
from the Release page. Extract the code.

2. Install the code as follows (to do so, you will need the packages autoconf, automake, libtool, curl, make, g++,
unzip).

./configure
make
make check
sudo make install
sudo ldconfig # refresh shared library cache.

You now should check if installation was sucessful

$ protoc --version
libprotoc 3.8.0

1.4. A short introduction to protobuf 5

http://www.obofoundry.org/ontology/ncit.html
http://www.obofoundry.org/ontology/ncit.html
http://www.human-phenotype-ontology.org
https://monarchinitiative.org/
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/HPO/
https://en.wikipedia.org/wiki/Protocol_Buffers
https://developers.google.com/protocol-buffers/
https://github.com/protocolbuffers/protobuf

phenopackets-schema Documentation, Release 10.0.0

1.4.2 An example schema

protobuf represents data as messages whose fields are indicated and aliased with a number and tag. Fields can be
required, optional, or repeated. The following message describes a dog. The name is represented as a string, and
the field is indicated with the number 1. The weight of the dog is represented as an integer. The toys field can store
multiple items represented as a string. Note that in protobuf3, it is not possible to define a field as required.

syntax = "proto3";

message dog {
required string name = 1;
int32 weight = 2;
repeated string toys = 4;
}

We can compile this code with the following command

$ protoc -I=. --java_out=. dog.proto

This will generate a Java file called Dog.java with code to create, import, and export protobuf data. For example,
the weight field is represented as follows.

public static final int WEIGHT_FIELD_NUMBER = 2;
private int weight_;
public int getWeight() {

return weight_;
}

It is highly recommended to peruse the complete Java file, but we will leave that as an exercise for the reader.

1.4.3 Using the generated code

We can now easily use a generated code to create Java instance of the Dog class. We will not provide a complete
maven tutorial here, but the key things that need to be done to get this to work are the following.

1. set up a maven-typical directory structure such as:

src
--main
----java
------org
--------example
----proto

Add the following to the dependencies

<dependency>
<groupId>com.google.protobuf</groupId>
<artifactId>protobuf-java</artifactId>
<version>3.5.1</version>

</dependency>

and add the following to the plugin section

<plugin>
<groupId>org.xolstice.maven.plugins</groupId>

(continues on next page)

6 Chapter 1. Introduction to Phenopackets

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

<artifactId>protobuf-maven-plugin</artifactId>
<version>0.5.1</version>
<extensions>true</extensions>
<configuration>
<protocExecutable>/usr/local/bin/protoc</protocExecutable>

</configuration>
<executions>
<execution>

<goals>
<goal>compile</goal>
<goal>test-compile</goal>

</goals>
</execution>

</executions>
</plugin>

This is the simplest configuration of the xolstice plugin; see the documentation for further information. We have
assumed that protoc is installed in /usr/local/bin in the above, and the path may need to be adjusted on your system.

Add the protobuf definition to the proto directory. Add a class such as Main.java in the /src/main/java/org/example
directory (package: org.example). For simplcity, the following code snippets could be written in the main method

String name = "Fido";
int weight = 5;
String toy1="bone";
String toy2="ball";

Dog.dog fido = Dog.dog.newBuilder()
.setName(name).
setWeight(weight).
addToys(toy1).
addToys(toy2).
build();

System.out.println(fido.getName() + "; weight: " + fido.getWeight() + "kg; favorite
→˓toys: "

+ fido.getToysList().stream().collect(Collectors.joining("; ")));

The code can be compiled with

$ mvn clean package

If we run the demo app, it should output the following.

Fido; weight: 5kg; favorite toys: bone; ball``.

Serialization

The following code snippet serializes the Java object fido and writes the serialized message to disk, then reads the
message and displays it.

try {
// serialize
String filePath="fido.pb";
FileOutputStream fos = new FileOutputStream(filePath);

(continues on next page)

1.4. A short introduction to protobuf 7

https://www.xolstice.org/protobuf-maven-plugin/usage.html

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

fido.writeTo(fos);
// deserialize
Dog.dog deserialized

= Dog.dog.newBuilder()
.mergeFrom(new FileInputStream(filePath)).build();

System.out.println("deserialized: "+deserialized.getName() + "; weight: " +
→˓deserialized.getWeight() + "kg; favorite toys: "

+ deserialized.getToysList().stream().collect(Collectors.joining("; ")));

} catch (IOException ioe) {
ioe.printStackTrace();

}

The code should output the following.

deserialized: Fido; weight: 5kg; favorite toys: bone; ball

We hope that this brief introduction was useful and refer to Google’s documentation for more details.

1.5 FHIR Implementation Guide

Phenopackets on FHIR is a FHIR implementation guide based on the Phenopackets standard. It is meant to be con-
ceptually equivalent but not directly interoperable. The guide is hosted at:

https://genomics.ontoserver.csiro.au/phenopackets/

Briefly, the phenopacket equivalents to various FHIR resources are as follows:

Age is mapped to the FHIR using Unified Code for Units of Measure (UCUM). See also Condition onset.

Biosample maps to Specimen.

Evidence maps to Condition.evidence.

ExternalReference maps to Reference.

Individual maps to Patient.

OntologyClass maps to CodeableConcept. See also Coding.

PhenotypicFeature maps to Condition or Observation elements. The FHIR mapping of the type element of Phenotyp-
icFeature is Condition.identifier, the mapping of the severity element is Condition.severity, the mapping of onset is
Condition.onset.

Procedure maps to Procedure.

Sex maps to AdministrativeGender.

Resource maps to CodeSystem.

8 Chapter 1. Introduction to Phenopackets

https://developers.google.com/protocol-buffers/
https://genomics.ontoserver.csiro.au/phenopackets/
http://unitsofmeasure.org/trac/
http://build.fhir.org/condition-definitions.html#Condition.onset_x_
http://www.hl7.org/fhir/specimen.html
https://www.hl7.org/fhir/condition-definitions.html#Condition.evidence
https://www.hl7.org/fhir/references.html
https://www.hl7.org/fhir/patient.html
http://www.hl7.org/fhir/datatypes.html#CodeableConcept
http://www.hl7.org/fhir/datatypes.html#Coding
https://www.hl7.org/fhir/condition.html
https://www.hl7.org/fhir/observation.html
https://www.hl7.org/fhir/procedure.html
https://www.hl7.org/fhir/codesystem-administrative-gender.html
http://www.hl7.org/fhir/codesystem.html

CHAPTER 2

Phenopacket Schema

The goal of the phenopacket-schema is to define a machine-readable phenotypic description of a patient/sample in the
context of rare disease, common/complex disease, or cancer. It aims to provide sufficient and shareable information
of the data outside of the EHR (Electronic Health Record) with the aim of enabling capturing of sufficient structured
data at the point of care by a clinician or clinical geneticist for sharing with other labs or computational analysis of the
data in clinical or research environments.

This work has been produced as part of the GA4GH Clinical Phenotype Data Capture Workstream and is designed to
be compatible with GA4GH metadata-schemas.

The phenopacket schema defines a common, limited set of data types which may be composed into more specialised
types for data sharing between resources using an agreed upon common schema.

This common schema has been used to define the ‘Phenopacket’ which is a catch-all collection of data types, specifi-
cally focused on representing disease data both initial data capture and analysis. The phenopacket schema is designed
to be both human and machine-readable, and to inter-operate with standards being developed in organizations such as
in the ISO TC215 comittee and the HL7 Fast Healthcare Interoperability Resources Specification (aka FHIR®).

2.1 Overview

The diagram below shows an overview of the schema elements.

The schema is defined in protobuf. You can find out more in the section ‘A short introduction to protobuf ’.

9

https://github.com/phenopackets/phenopacket-schema
https://ga4gh-cp.github.io/
https://github.com/ga4gh-metadata/metadata-schemas
https://www.iso.org/committee/7546903.html
http://hl7.org/fhir/

phenopackets-schema Documentation, Release 10.0.0

10 Chapter 2. Phenopacket Schema

CHAPTER 3

Top-Level Elements

The phenopacket schema features top-level elements that make use of Phenopacket building blocks to structure the
information.

3.1 Phenopacket

A Phenopacket is an anonymous phenotypic description of an individual or biosample with potential genes of interest
and/or diagnoses. It can be used for multiple use cases. For instance, it can be used to describe the phenotypic findings
observed in an individual with a disease that is being studied or for an individual in whom the diagnosis is being sought.
The phenopacket can contain information about genetic findings that are causative of the disease, or alternatively it
can contain a reference to a VCF file if exome sequencing is being performed as a part of the differential diagnostic
process. A Phenopacket can also be used to describe the constitutional phenotypic findings of an individual with
cancer (a Biosample should be used to describe the phenotypic abnormalities directly associated with an extirpated or
biopsied tumor).

Table 1: Definition of the Phenopacket element
Field Type Status Definition
id string required arbitrary identifier
subject Individual recommended The proband
phenotypic_featuresList of Pheno-

typicFeature
recommended Phenotypic features observed in the proband

biosamples Biosample optional samples (e.g., biopsies), if any
genes Gene optional Gene deemed to be relevant to the case (applica-

tion specific)
variants List of Variant optional Variants identified in the proband
diseases List of Dis-

ease
optional Disease(s) diagnosed in the proband

hts_files List of HtsFile optional VCF or other high-throughput sequencing files
meta_data MetaData required Information about ontologies and references used

in the phenopacket

11

phenopackets-schema Documentation, Release 10.0.0

3.1.1 id

The id is an identifier specific for this phenopacket. The syntax of the identifier is application specific.

3.1.2 subject

This is typically the individual human (or another organism) that the Phenopacket is describing. In many cases, the
individual will be a patient or proband of the study. See Individual for further information.

3.1.3 phenotypic_features

This is a list of phenotypic findings observed in the subject. See PhenotypicFeature for further information.

3.1.4 biosamples

This field describes samples that have been derived from the patient who is the object of the Phenopacket. or a
collection of biosamples in isolation. See Biosample for further information.

3.1.5 genes

This is a field for gene identifiers and can be used for listing either candidate genes or causative genes. The resources
using these fields should define what this represents in their context. This could be used in order to obfuscate the
specific causative/candidate variant to maintain patient privacy. See Gene for further information.

3.1.6 variants

This is a field for genetic variants and can be used for listing either candidate variants or diagnosed causative variants.
The resources using these fields should define what this represents in their context. See Variant for further information.

3.1.7 diseases

This is a field for disease identifiers and can be used for listing either diagnosed or suspected conditions. The resources
using these fields should define what this represents in their context. See Disease for further information.

3.1.8 hts_files

This element contains a list of pointers to the relevant HTS file(s) for the patient. Each element describes what type
of file is meant (e.g., BAM file), which genome assembly was used for mapping, as well as a map of samples and
individuals represented in that file. It also contains a URI element which refers to a file on a given file system or a
resource on the web.

See HtsFile for further information.

3.1.9 meta_data

This element contains structured definitions of the resources and ontologies used within the phenopacket. It is expected
that every valid Phenopacket contains a metaData element. See MetaData for further information.

12 Chapter 3. Top-Level Elements

phenopackets-schema Documentation, Release 10.0.0

3.2 Family

Phenotype, sample and pedigree data required for a genomic diagnosis. This element is equivalent to the Genomics
England InterpretationRequestRD.

In many cases, genetic diagnostics of Mendelian and other disease is performed on a family basis in order to check
for cosegregation of candidate variants with a disease. Usually, one family member is designated as the proband,
for instance, a child affected by a genetic disease might be the proband in a family. Genomic diagnostics might
involve genome sequencing of the child and his or her parents. In this case, the Family element would include a
Phenopacket for the child (proband element). If the parents themselves display phenotypic findings relevant to the
analysis, then Phenopackets are included for them (using the relatives element). If the parents do not display any
relevant phenotypic findings, then it is not necessary to include Phenopacket elements for them. Instead, their status
as unaffected can be recorded with the Pedigree element.

Data model

Table 2: Definition of the Family element
Field Type Status Description
id string required application-specific identifier
proband Phenopacket required The proband (index patient) in

the family
relatives Phenopacket

(list)
optional list of Phenopackets for family

members other than the proband
pedigree Pedigree required representation of the pedigree
hts_files HtsFile (list) optional list of high-throughput sequenc-

ing files
meta_data MetaData required Metadata about ontologies and

references used in this message

3.2.1 id

An identifier specific for this family.

3.2.2 proband

The individual representing the focus of this packet - e.g. the proband in rare disease cases or cancer patient. See
Individual for further information.

3.2.3 relatives

Individuals related in some way to the patient. For instance, the individuals may be genetically related or may be
members of a cohort. If this field is used, then it is expected that a pedigree will be included for genetically related
individuals for use cases such as genomic diagnostics. If a phenopacket is being used to describe one member of a
cohort, then in general one phenopacket will be created for each of the individuals in the cohort. If this field is used,
then it is expected that a pedigree will be included for genetically related individuals for use cases such as genomic
diagnostics. If all that is required is to record affected/not-affected status in a family, it is possible to use the pedigree
element only.

3.2. Family 13

https://github.com/genomicsengland/GelReportModels/blob/master/schemas/IDLs/org.gel.models.report.avro/5.0.0/InterpretationRequestRD.avdl

phenopackets-schema Documentation, Release 10.0.0

3.2.4 pedigree

The pedigree defining the relations between the proband and their relatives. This element contains information com-
patible with the information in a PED file. Pedigree.individual_id MUST map to the PhenoPacket.Individual.id. See
Pedigree for further information.

3.2.5 hts_files

This element contains a list of pointers to the relevant HTS file(s) for the family as a whole. For a Family these
files MUST be merged/multi-sample files with appropriate genotype information. For a multi-sample file, the sample
identifiers MUST each map to a Pedigree.individual_id referenced in the pedigree field, in order that
linkage analysis can be performed on the sample.

See HtsFile for further information.

3.2.6 meta_data

This element contains structured definitions of the resources and ontologies used within the phenopacket. It is expected
that every valid Phenopacket contains a metaData element. See MetaData for further information.

3.3 Cohort

This element describes a group of individuals related in some phenotypic or genotypic aspect. For instance, a cohort
can consist of individuals all of whom have been diagnosed with a certain disease or have been found to have a certain
phenotypic feature.

We recommend using the Family element to describe families being investigated for the presence of a Mendelian
disease.

Data model

Table 3: Definition of the Cohort element
Field Type Status Description
id string required arbitrary identifier
description string optional arbitrary text
members Phenopacket required Phenopackets that represent mem-

bers of the cohort
hts_files HtsFile optional High-thoughput sequencing files

obtained from members of the
cohort

meta_data MetaData required Metadata related to the ontologies
and references used in this message

3.3.1 id

The id is an identifier specific for this cohort. The syntax of the identifier is application specific.

3.3.2 description

Any information relevant to the study can be added here as free text.

14 Chapter 3. Top-Level Elements

phenopackets-schema Documentation, Release 10.0.0

3.3.3 members

One Phenopacket is included for each member of the cohort.

3.3.4 hts_files

This element contains a list of pointers to the relevant HTS file(s) for the cohort. The HTS file MUST be a multi-
sample file referring to the entire cohort, if appropriate. Individual HTS files MUST otherwise be contained within
their appropriate scope. e.g. within a Phenopacket for germline samples of an individual or within the scope of the
Phenopacket.Biosample in the case of genomic data derived from sequencing that biosample. Each element
describes what type of file is meant (e.g., BAM file), which genome assembly was used for mapping, as well as a map
of samples and individuals represented in that file. It also contains a URI element which refers to a file on a given file
system or a resource on the web.

See HtsFile for further information.

3.3.5 meta_data

This element contains structured definitions of the resources and ontologies used within the phenopacket. It is expected
that every valid Phenopacket contains a metaData element. See MetaData for further information.

3.4 Interpretation

This message intends to represent the interpretation of a genomic analysis, such as the report from a diagnostic labo-
ratory.

Data model

Field Type Status Description
id string required Arbitrary identifier
resolution_statusResolution_status required The current status of work

on the case
phenopacket_or_familyPhenopacket or Family el-

ement
required The subject of this inter-

pretation
diagnosis Diagnosis repeated One or more diagnoses, if

made
meta_data See MetaData required Metadata about this inter-

pretation

Example

{
"id": "SOLVERD:0000123456",
"resolutionStatus": "SOLVED",
"phenopacket": {
"id": "SOLVERD:0000234567",
"subject": {

"id": "SOLVERD:0000345678",
"dateOfBirth": "1998-01-01T00:00:00Z",
"sex": "MALE"

},

(continues on next page)

3.4. Interpretation 15

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

"phenotypicFeatures": [{
"type": {

"id": "HP:0001159",
"label": "Syndactyly"

},
"classOfOnset": {

"id": "HP:0003577",
"label": "Congenital onset"

}
}, {

"type": {
"id": "HP:0002090",
"label": "Pneumonia"

},
"classOfOnset": {
"id": "HP:0011463",
"label": "Childhood onset"

}
}, {

"type": {
"id": "HP:0000028",
"label": "Cryptorchidism"

},
"classOfOnset": {
"id": "HP:0003577",
"label": "Congenital onset"

}
}, {

"type": {
"id": "HP:0011109",
"label": "Chronic sinusitis"

},
"severity": {

"id": "HP:0012828",
"label": "Severe"

},
"classOfOnset": {

"id": "HP:0003581",
"label": "Adult onset"

}
}],
"variants": [{

"hgvsAllele": {
"hgvs": "NM_001361.4:c.403C\u003eT"

},
"zygosity": {

"id": "GENO:0000135",
"label": "heterozygous"

}
}, {

"hgvsAllele": {
"hgvs": "NM_001361.4:c.454G\u003eA"

},
"zygosity": {

"id": "GENO:0000135",
"label": "heterozygous"

}
(continues on next page)

16 Chapter 3. Top-Level Elements

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

}, {
"hgvsAllele": {
"hgvs": "NM_001369.2:c.12599dupA"

},
"zygosity": {

"id": "GENO:0000136",
"label": "homozygous"

}
}]

},
"diagnosis": [{
"disease": {

"term": {
"id": "OMIM:263750",
"label": "Miller syndrome"

}
},
"genomicInterpretations": [{
"status": "CAUSATIVE",
"gene": {

"id": "HGNC:2867",
"symbol": "DHODH"

}
}]

}]
}

3.4.1 id

The id has the same interpretation as the id element in the Individual element.

3.4.2 Resolution_status

The interpretation has a ResolutionStatus that refers to the status of the attempted diagnosis.

Data model

Implementation note - this is an enumerated type, therefore the values represented below are the only legal values.
The value of this type SHALL NOT be null, instead it SHALL use the 0 (zero) ordinal element as the default value,
should none be specified.

Name Ordi-
nal

Description

UNKNOWN 0 No information is available about the diagnosis
SOLVED 1 The interpretation is considered to be a definitive diagnosis
UNSOLVED 2 No definitive diagnosis was found
IN_PROGRESS 3 No diagnosis has been found to date but additional differential diagnostic work is in

progress.

Example

3.4. Interpretation 17

phenopackets-schema Documentation, Release 10.0.0

{
"resolutionStatus": "SOLVED"

}

3.4.3 phenopacket_or_family

This element refers to the Phenopacket or Family element for whom the interpretation is being made.

3.4.4 diagnosis

This refers to the diagnosis (or if applicable to the diagnoses) made. See Diagnosis, below.

3.4.5 meta_data

This element contains structured definitions of the resources and ontologies used within the phenopacket. See Meta-
Data for further information.

3.4.6 Diagnosis

The diagnosis element is meant to refer to the disease that is infered to be present in the individual or family being
analyzed. The diagnosis can be made by means of an analysis of the phenotypic or the genomic findings or both. The
element is optional because if the resolution_status is UNSOLVED then there is no diagnosis.

Data elements

Field Type Status Description
disease Disease required The diagnosed condition
genomic_interpretationsGenomicInterpretation repeated The genomic elements as-

sessed as being responsible
for the disease or empty

Example

{
"disease": {

"term": {
"id": "OMIM:263750",
"label": "Miller syndrome"

}
},
"genomicInterpretations": [{
"status": "CAUSATIVE",
"gene": {

"id": "HGNC:2867",
"symbol": "DHODH"

}
}]

}

The genomic_interpretations should be used if the genetic findings were used to help make the diagnosis, but can be
omitted if genetic/genomic analysis was not contributory or were not performed.

18 Chapter 3. Top-Level Elements

phenopackets-schema Documentation, Release 10.0.0

3.4.7 GenomicInterpretation

A statement about the contribution of a genomic element towards the observed phenotype. Note that this does not
intend to encode any knowledge or results of specific computations.

Data model

Field Type Status Example
status GenomicInterpretation Sta-

tus
required How the call of this Ge-

nomicInterpretation was in-
terpreted

call Gene or Variant required The gene or variant con-
tributing to the diagnosis

Example

{
"status": "CAUSATIVE",
"gene": {
"id": "HGNC:2867",
"symbol": "DHODH"

}
}

A gene can be listed as CAUSATIVE. Alternatively, or additionally, a variant may be listed as CAUSATIVE. Note
that the intended semantics is different from the ACMG interpretation of sequence variants, which classifies variants
with respect to their pathogenicity. The Interpretation element classifies variants as being responsible or not for the
phenotypic and disease observations in the proband. A variant can be pathogenic according to the ACMG guidelines
but not be causative for the particular disease being investigated (for instance, a heterozygous variant associated with
an autosomal recessive disease may be found in a proband with causative variants in another gene).

3.4.8 GenomicInterpretation Status

An enumeration describing the status of a GenomicInterpretation

Data model

Implementation note - this is an enumerated type, therefore the values represented below are the only legal values.
The value of this type SHALL NOT be null, instead it SHALL use the 0 (zero) ordinal element as the default value,
should none be specified.

Name Ordinal Description
UNKNOWN 0 It is not known how this genomic element contributes to the diagnosis
REJECTED 1 The genomic element has been investigated and ruled-out
CANDIDATE 2 The genomic element is under investigation
CAUSATIVE 3 The genomic element has been judged to be contributing to the diagnosis

Example

{
"status": "CAUSATIVE"

}

3.4. Interpretation 19

https://www.ncbi.nlm.nih.gov/pubmed/27993330

phenopackets-schema Documentation, Release 10.0.0

20 Chapter 3. Top-Level Elements

CHAPTER 4

Phenopacket building blocks

The phenopacket standard consists of several protobuf messages each of which contains information about a certain
topic such as phenotype, variant, pedigree, and so on. One message can contain other messages, which allows a rich
representation of data. For instance, the Phenopacket message contains messages of type Individual, PhenotypicFea-
ture, Biosample, and so on. Individual messages can therefore be regarded as building blocks that are combined to
create larger structures. It would also be straightforward to include the Phenopackets schema into larger schema for
particular use cases. Follow the links to read more information about individual building blocks.

4.1 Age

The Age element allows the age of the subject to be encoded in several different ways that support different use cases.
Age is encoded as ISO8601 duration.

Data model

Field Type Status Description
age string required An ISO8601 string represent age

If the Age message is used, the age value must be present.

Example

{
"age": "P25Y3M2D"

}

The string element (string age=1) should be used for ISO8601 durations (e.g., P40Y10M05D). For many use cases,
less precise strings will be preferred for privacy reasons, e.g., P40Y.

4.1.1 age

It is possible to represent age using a string that should be formated according as ISO8601 Duration.

21

https://en.wikipedia.org/wiki/ISO_8601#Durations
https://en.wikipedia.org/wiki/ISO_8601#Durations

phenopackets-schema Documentation, Release 10.0.0

4.2 AgeRange

The AgeRange element is inteded to be used when the age of a subject is represented by a bin, e.g., 5-10 years.
Bins such as this are used in some situations in order to protect the privacy of study participants, whose age is then
represented by bins such as 45-49 years, 50-54 years, 55-59 years, and so on.

Data model

Field Type Status Description
start Age required An Age message
end Age required An Age message

Example

For instance, to represent the bin 45-49 years, one could use an Age element with P45Y as the start element of
the AgeRange element, and an Age element with P49Y as the end element. An AgeRange.end SHALL occur after
AgeRange.start.

{
"start": {

"age": "P45Y"
},
"end": {

"age": "P49Y"
}

}

4.3 Biosample

A Biosample refers to a unit of biological material from which the substrate molecules (e.g. genomic DNA, RNA,
proteins) for molecular analyses (e.g. sequencing, array hybridisation, mass-spectrometry) are extracted. Examples
would be a tissue biopsy, a single cell from a culture for single cell genome sequencing or a protein fraction from a
gradient centrifugation. Several instances (e.g. technical replicates) or types of experiments (e.g. genomic array as
well as RNA-seq experiments) may refer to the same Biosample.

Data model

22 Chapter 4. Phenopacket building blocks

phenopackets-schema Documentation, Release 10.0.0

Field Type Status Description
id string required arbitrary identifier
individual_id string recommended arbitrary identifier
description string optional arbitrary text
sampled_tissue OntologyClass required Tissue from which the sample

was taken
phenotypic_featuresPhenotypicFeaturerecommended List of phenotypic abnormali-

ties of the sample
taxonomy OntologyClass optional Species of the sampled individ-

ual
individual_age_at_collectionAge OR

AgeRange
recommended Age of the proband at the time

the sample was taken
histological_diagnosisOntologyClass recommended Disease diagnosis that was in-

ferred from the histological ex-
amination

tumor_progressionOntologyClass recommended Indicates primary, metastatic,
recurrent

tumor_grade OntologyClass recommended List of terms representing the
tumor grade

diagnostic_markersOntologyClass recommended Clinically relevant biomarkers
procedure Procedure required The procedure used to extract

the biosample
hts_files HtsFile optional list of high-throughput se-

quencing files derived from the
biosample

variants Variant optional List of variants determined to be
present in the biosample

is_control_sampleboolean optional (default: false) whether the sample is being
used as a normal control

Example

{
"id": "sample1",
"individualId": "patient1",
"description": "",
"sampledTissue": {
"id": "UBERON_0001256",
"label": "wall of urinary bladder"

},
"ageOfIndividualAtCollection": {
"age": "P52Y2M"

},
"histologicalDiagnosis": {
"id": "NCIT:C39853",
"label": "Infiltrating Urothelial Carcinoma"

},
"tumorProgression": {
"id": "NCIT:C84509",
"label": "Primary Malignant Neoplasm"

},
"procedure": {
"code": {

"id": "NCIT:C5189",
(continues on next page)

4.3. Biosample 23

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

"label": "Radical Cystoprostatectomy"
}

},
"htsFiles": [{
"uri": "file://data/genomes/urothelial_ca_wgs.vcf.gz",
"description": "Urothelial carcinoma sample"
"htsFormat": "VCF",
"genomeAssembly": "GRCh38",
"individualToSampleIdentifiers": {
"patient1": "NA12345"

}
}],
"variants": [],
"isControlSample": false

}

4.3.1 id

The Biosample id. This is unique in the context of the server instance.

4.3.2 individual_id

The id of the Individual this biosample was derived from. It is recommended, but not necessary to provide this
information here if the Biosample is being transmitted as a part of a Phenopacket.

4.3.3 description

The biosample’s description. This attribute contains human readable text. The “description” attributes should not
contain any structured data.

4.3.4 sampled_tissue

On OntologyClass describing the tissue from which the specimen was collected. We recommend the use of UBERON.
The PDX MI mapping is Specimen tumor tissue.

4.3.5 phenotypic_features

The phenotypic characteristics of the BioSample, for example histological findings of a biopsy. See PhenotypicFeature
for further information.

4.3.6 taxonomy

For resources where there may be more than one organism being studied it is advisable to indicate the taxonomic
identifier of that organism, to its most specific level. We advise using the codes from the NCBI Taxonomy resource.
For instance, NCBITaxon:9606 is human (homo sapiens sapiens) and or NCBITaxon:9615 is dog.

24 Chapter 4. Phenopacket building blocks

https://www.ebi.ac.uk/ols/ontologies/uberon
https://www.ncbi.nlm.nih.gov/taxonomy

phenopackets-schema Documentation, Release 10.0.0

4.3.7 individual_age_at_collection

An Age or AgeRange describing the age or age range of the individual this biosample was derived from at the time of
collection. See Age for further information.

4.3.8 histological_diagnosis

This is the pathologist’s diagnosis and may often represent a refinement of the clinical diagnosis (which could
be reported in the Phenopacket that contains this Biosample). Normal samples would be tagged with the term
“NCIT:C38757”, “Negative Finding”. See OntologyClass for further information.

4.3.9 tumor_progression

This field can be used to indicate if a specimen is from the primary tumor, a metastasis or a recurrence. There are
multiple ways of representing this using ontology terms, and the terms chosen should have a specific meaning that is
application specific.

For example a term from the following NCIT terms from the Neoplasm by Special Category can be chosen.

• Primary Neoplasm

• Metastatic Neoplasm

• Recurrent Neoplasm

4.3.10 tumor_grade

This should be a child term of NCIT:C28076 (Disease Grade Qualifier) or equivalent. See the tumor grade fact sheet.

4.3.11 diagnostic_markers

Clinically relevant bio markers. Most of the assays such as immunohistochemistry (IHC) are covered by the
NCIT under the sub-hierarchy NCIT:C25294 (Laboratory Procedure), e.g. NCIT:C68748 (HER2/Neu Positive),
NCIT:C131711 (Human Papillomavirus-18 Positive).

4.3.12 procedure

The clinical procedure performed on the subject in order to extract the biosample. See Procedure for further informa-
tion.

4.3.13 hts_files

This element contains a list of pointers to the relevant HTS file(s) for the biosample. Each element describes what
type of file is meant (e.g., BAM file), which genome assembly was used for mapping, as well as a map of samples and
individuals represented in that file. It also contains a URI element which refers to a file on a given file system or a
resource on the web.

See HtsFile for further information.

4.3. Biosample 25

https://www.ebi.ac.uk/ols/ontologies/ncit/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCIT_C7062
https://www.ebi.ac.uk/ols/ontologies/ncit/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCIT_C8509
https://www.ebi.ac.uk/ols/ontologies/ncit/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCIT_C3261
https://www.ebi.ac.uk/ols/ontologies/ncit/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCIT_C4798
https://www.cancer.gov/about-cancer/diagnosis-staging/prognosis/tumor-grade-fact-sheet

phenopackets-schema Documentation, Release 10.0.0

4.3.14 variants

This is a field for genetic variants and can be used for listing either candidate variants or diagnosed causative variants.
If this biosample represents a cancer specimen, the variants might refer to somatic variants identified in the biosample.
The resources using these fields should define what this represents in their context. See Variant for further information.

4.3.15 is_control_sample

A boolean (true/false) value. If true, this sample is being use as a normal control, often in combination with another
sample that is thought to contain a pathological finding the default value is false.

4.4 Disease

The word phenotype is used with many different meanings, including “the observable traits of an organism”. In
medicine, the word can be used with at least two different meanings. It is used to refer to some observed deviation from
normal morphology, physiology, or behavior. In contrast, the disease is a diagnosis, i.e., and inference or hypothesis
about the cause underlying the observed phenotypic abnormalities. Occasionally, physicians use the word phenotype
to refer to a disease, but we do not use this meaning here.

Data model

Field Type Sta-
tus

Description

term OntologyClass re-
quired

An ontology class that represents the disease

onset Age or AgeRange or Ontolo-
gyClass

op-
tional

an element representing the age of onset of the disease

dis-
ease_stage

OntologyClass op-
tional

List of terms representing the disease stage e.g. AJCC
stage group.

tnm_finding OntologyClass op-
tional

List of terms representing the tumor TNM score

Example

{
"term": {

"id": "OMIM:164400",
"label": "Spinocerebellar ataxia 1 "
},

"ageOfOnset": {
"age": "P38Y7M"
}

}

See A complete example: Oncology for a usage of the Disease element that includes information about tumor staging.

4.4.1 term

In the phenopacket schema, the disease element denotes the diagnosis by means of an ontology class. For rare diseases,
we recommend using a term from Online Mendelian Inheritance in Man (OMIM) (e.g., OMIM:101600), Orphanet
(e.g., Orphanet:710), or MONDO (e.g., MONDO:0007043). There are many other ontologies and terminologies that

26 Chapter 4. Phenopacket building blocks

https://omim.org/
https://www.orpha.net/consor/cgi-bin/index.php
https://github.com/monarch-initiative/mondo

phenopackets-schema Documentation, Release 10.0.0

can be used including Disease Ontology, SNOMED, and ICD. For cancers, we recommend using terms from domain-
specific ontologies, such as NCIthesaurus (e.g., NCIT:C9049).

4.4.2 disease_stage

This attribute is used to describe the stage of disease. If the disease is a cancer, this attribute describes the extent of
cancer development, typically including an AJCC stage group (i.e., Stage 0, I-IV), though other staging systems are
used for some cancers. See staging. The list of elements constituting this attribute should be derived from child terms
of NCIT:C28108 (Disease Stage Qualifier) or equivalent hierarchy from another ontology.

4.4.3 tnm_finding

This attribute can be used if the phenopacket is describing cancer. TNM findings score the progression of cancer with
respect to the originating tumor (T), spread to lymph nodes (N), and presence of metastases (M). These findings are
commonly reported for tumors, and support the stage classifications stored in the disease_stage attribute. See staging.
The list of elements constituting this attribute should be derived from child terms of NCIT:C48232 (Cancer TNM
Finding) or equivalent hierarchy from another ontology.

4.4.4 age_of_onset

The onset element provides three possibilities of describing the onset of the disease. It is also possible to denote the
onset of individual phenotypic features of disease in the Phenopacket element. If an ontology class is used to refer to
the age of onset of the disease, we recommend using a term from the HPO onset hierarchy.

4.5 Evidence

This element intends to represent the evidence for an assertion such as an observation of a PhenotypicFeature. We
recommend the use of terms from the Evidence & Conclusion Ontology (ECO)

Data model

Table 1: Definition the Evidence element
Field Type Status Description
evidence_code OntologyClass

representing
ECO:0006017

required An ontology class that repre-
sents the evidence type

reference ExternalReferenceoptional Representation of the source of
the evidence

Example

{
"evidenceCode": {
"id": "ECO:0006017",
"label": "author statement from published clinical study used in manual assertion"

},
"reference": {
"id": "PMID:30962759",
"description": "Recurrent Erythema Nodosum in a Child with a SHOC2 Gene Mutation"

(continues on next page)

4.5. Evidence 27

http://disease-ontology.org/
http://www.snomed.org/
https://www.who.int/classifications/icd/en/
https://ncit.nci.nih.gov/ncitbrowser/
https://www.cancer.gov/about-cancer/diagnosis-staging/staging
https://www.cancer.gov/about-cancer/diagnosis-staging/staging
https://hpo.jax.org/app/browse/term/HP:0003674
http://purl.obolibrary.org/obo/eco.owl

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

}
}

4.5.1 evidence_code

For example, in order to describe the evidence for a phenotypic observation that is derived from a publication, one
might use the ECO term author statement from published clinical study used in manual assertion (ECO:0006017) and
record a PubMed id in the reference field (See ExternalReference).

4.5.2 reference

An ExternalReference is used to store a reference to the publication or other source that supports the evidence. Not all
types of evidence will have an external reference, and therefore this field is optional.

4.6 ExternalReference

This element encodes information about an external reference.

Data model

Table 2: Definition of the ExternalReference element
Field Type Status Description
id string required An application specific identi-

fier
description string optional An application specific descrip-

tion

Example

{
"id": "PMID:30962759",
"description": "Recurrent Erythema Nodosum in a Child with a SHOC2 Gene Mutation"

}

4.6.1 id

The syntax of the identifier is application specific. It is RECOMMENDED that this is a CURIE that uniquely identifies
the evidence source, e.g. ISBN:978-3-16-148410-0 or PMID:123456. However, it could be a URL/URI, or other
relevant identifier.

It is RECOMMENDED to use a CURIE identifier and corresponding Resource.

4.6.2 description

An optional free text description of the evidence.

28 Chapter 4. Phenopacket building blocks

https://www.ebi.ac.uk/ols/ontologies/eco/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FECO_0006017

phenopackets-schema Documentation, Release 10.0.0

4.7 Gene

This element represents an identifier for a gene. It can be used to transmit the information that the gene is thought to
play a causative role in the disease phenotypes being described in cases where the exact variant cannot be transmitted,
either for privacy reasons or because it is unknown.

Data model

Table 3: Definition of the Gene element
Field Type Status Description
id string required Official identifier of the gene
alternate_ids repeated string optional Alternative identifier(s) of the gene
symbol string required Official gene symbol

Example

{
"id": "HGNC:347"
"symbol": "ETF1"

}

Optionally, with alternative identifiers:

{
"id": "HGNC:347",
"alternate_ids": ["ensembl:ENSRNOG00000019450", "ncbigene:307503"],
"symbol": "ETF1"

}

4.7.1 id

The id represents the accession number of comparable identifier for the gene.

It SHOULD be a CURIE identifier with a prefix that is used by the official organism gene nomenclature committee.
In the case of Humans, this is the HGNC e.g. HGNC:347

4.7.2 alternate_ids

This field can be used to provide identifiers to alternative resources where this gene is used or catalogued. For example,
the NCBI and Ensemble both provide alternative identifiers for genes where they catalogue the transcripts for a gene
e.g. ncbigene:2107, ensembl:ENSG00000120705 These identifiers SHOULD be represented in CURIE form with a
corresponding Resource.

4.7.3 symbol

This SHOULD use official gene symbol as designated by the organism gene nomenclature committee. In the case of
human this is the HUGO Gene Nomenclature Committee e.g. ETF1.

4.7. Gene 29

https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:3477
https://www.ncbi.nlm.nih.gov/gene/2107
http://useast.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000120705;r=5:138506095-138543236
https://www.genenames.org
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:3477

phenopackets-schema Documentation, Release 10.0.0

4.7.4 Model Organisms

Model organisms represented by the Alliance of Genome Resources should use the primary identifier and symbol
provided. e.g. for Mus musculus gene eukaryotic translation termination factor 1

{
"id": "MGI:2385071",
"alternate_ids": ["ensembl:ENSMUSG00000024360", "ncbigene:225363"],
"symbol": "Etf1"

}

4.8 HtsFile

Phenopackets can be used to hold phenotypic information that can inform the analysis of sequencing data in VCF for-
mat as well as other high-throughput sequencing (HTS) or other data types. The HtsFile message allows a Phenopacket
to link HTS files with data.

Given that HtsFile elements are listed in various locations such as the Phenopacket, Biosample, Family etc.
which can in turn be nested, individual HTS files MUST be contained within their appropriate scope. For exam-
ple within a Phenopacket for germline samples of an individual or within the scope of the Phenopacket.
Biosample in the case of genomic data derived from sequencing that biosample. Aggregate data types such as
Cohort and Family MUST contain aggregate HTS file data i.e. merged/multi-sample VCF at the level of the
Family/Cohort, but each member Phenopacket can contain its own locally-scope HTS files pertaining to that individ-
ual/biosample(s).

4.8.1 HtsFile

Field Type Status Description
uri string required A valid URI e.g.

file://data/file1.vcf.gz or
https://opensnp.org/data/60.
23andme-exome-vcf.231?
1341012444

description string optional arbitrary description of the file
hts_format HtsFormat required VCF
genome_assemblystring required e.g. GRCh38
individual_to_sample_identifiersa map of string key: value recommended The mapping between the In-

dividual.id or Biosample.id to
the sample identifier in the
HTS file

4.8.2 HtsFormat

This message is used for a file in one of the HTS formats.

30 Chapter 4. Phenopacket building blocks

https://www.alliancegenome.org
https://www.alliancegenome.org/gene/MGI:2385071
https://www.ncbi.nlm.nih.gov/pubmed/21653522
https://www.ncbi.nlm.nih.gov/pubmed/21653522
file://data/file1.vcf.gz
https://opensnp.org/data/60.23andme-exome-vcf.231?1341012444
https://opensnp.org/data/60.23andme-exome-vcf.231?1341012444
https://opensnp.org/data/60.23andme-exome-vcf.231?1341012444
https://samtools.github.io/hts-specs

phenopackets-schema Documentation, Release 10.0.0

Field Description
UNKNOWN An HTS file of unknown type.
SAM A SAM format file
BAM A BAM format file
CRAM A CRAM format file
VCF A VCF format file
BCF A BCF format file
GVCF A GVCF format file
FASTQ A FASTQ format file

Example

{
"uri": "file://data/genomes/germline_wgs.vcf.gz",
"description": "Matched normal germline sample",
"htsFormat": "VCF",
"genomeAssembly": "GRCh38",
"individualToSampleIdentifiers": {
"patient23456": "NA12345"

}
}

4.8.3 uri

URI for the file e.g. file://data/genomes/file1.vcf.gz or https://opensnp.org/data/60.23andme-exome-
vcf.231?1341012444.

4.8.4 description

An arbitrary description of the file contents.

The File message MUST have at least one of path and uri and usually should just have one of the two (in exceptional
cases the same file might be referenced on a local file system and on the network).

4.8.5 hts_format

This indicates which format the file has.

4.8.6 genome_assembly

The genome assembly the contents of this file was called against. We recommend using the Genome Reference
Consortium nomenclature e.g. GRCh37, GRCh38.

4.8.7 individual_to_sample_identifiers

A map of identifiers mapping an individual refered to in the Phenopacket to a sample in the file. The key values must
correspond to the Individual::id for the individuals in the message or Biosample::id for biosamples, the values must
map to the samples in the HTS file.

4.8. HtsFile 31

https://www.ncbi.nlm.nih.gov/grc
https://www.ncbi.nlm.nih.gov/grc

phenopackets-schema Documentation, Release 10.0.0

4.9 Individual

The subject of the Phenopacket is represented by an Individual element. This element intends to represent an individual
human or other organism. In this documentation, we explain the element using the example of a human proband in a
clinical investigation.

Data model

Field Type Status Description
id string required An arbitrary identifier
alternate_ids a list of CURIE optional A list of alternative identi-

fiers for the individual
date_of_birth timestamp optional A timestamp either exact

or imprecise
age Age or AgeRange recommended The age or age range of the

individual
sex Sex recommended Observed apparent sex of

the individual
karyotypic_sexKaryotypicSex optional The karyotypic sex of the

individual
taxonomy OntologyClass optional an OntologyClass repre-

senting the species (e.g.,
NCBITaxon:9615)

Example

The following example is typical but does not make use of all of the optional fields of this element.

{
"id": "patient:0",
"dateOfBirth": "1998-01-01T00:00:00Z",
"sex": "MALE"

}

4.9.1 id

This element is the primary identifier for the individual and SHOULD be used in other parts of a message when
referring to this individual - for example in a Pedigree or Biosample. The contents of the element are context dependent,
and will be determined by the application. For instance, if the Phenopacket is being used to represent a case study
about an individual with some genetic disease, the individual may be referred to in that study by their position in the
pedigree, e.g., III:2 for the second person in the third generation. In this case, id would be set to III:2.

If a Pedigree element is used, it is essential that the individual_id of the Pedigree element matches the id field
here.

If a Biosample element is used, it is essential that the individual_id of the Biosample element matches the id
field here.

All identifiers within a phenopacket pertaining to an individual SHOULD use this identifier. It is the responsibility of
the sender to provide the recipient an internally consistent message. This is possible as all messages can be created
dynamically be the sender using identifiers appropriate for the receiving system.

For example, a hospital may want to send a Family to an external lab for analysis. Here the hospital is providing an
obfuscated identifier which is used to identify the individual in the Phenopacket, the Pedigree and mappings to the
sample id in the rsthtsfile.

32 Chapter 4. Phenopacket building blocks

phenopackets-schema Documentation, Release 10.0.0

In this case the Pedigree is created by the sending system from whatever source they use and the identifiers should be
mapped to those Individual.id contained in the Family.proband and Family.relatives phenopackets.

In the case the VCF file, the sending system likely has no control or ability to change the identifiers used for the
sample id and it is likely they use different identifiers. It is for this reason the rsthtsfile has a local mapping field
HtsFile.individual_to_sample_identifiers where the Individual.id can be mapped to the sample id in that file.

example

In this example we show individual blocks which would be used as part of a singleton ‘family’ to illustrate the use
of the internally consistent Individual.id. As noted above, the data may have been constructed by the sender from
different sources but given they know these relationships, they should provide the receiver with a consistent view of
the data both for ease of use and to limit incorrect mapping.

"individual": {
"id": "patient23456",
"dateOfBirth": "1998-01-01T00:00:00Z",
"sex": "MALE"

}

"htsFile": {
"uri": "file://data/genomes/germline_wgs.vcf.gz",
"description": "Germline sample",
"htsFormat": "VCF",
"genomeAssembly": "GRCh38",
"individualToSampleIdentifiers": {
"patient23456": "NA12345"

}
}

"pedigree": {
"persons": [

{
"familyId": "family 1",
"individualId": "patient23456",
"sex": "MALE",
"affectedStatus": "AFFECTED"

}
]

}

4.9.2 alternate_ids

An optional list of alternative identifiers for this individual. These should be in the form of rstcurie‘s and hence have
a corresponding :ref:‘rstresource listed in the MetaData. These should not be used elsewhere in the phenopacket as
this will break the assumptions required for using the id field as the primary identifier. This field is provided for the
convenience of users who may have multiple mappings to an individual which they need to track.

4.9.3 date_of_birth

This element represents the date of birth of the individual as an ISO8601 UTC timestamp that is rounded down to the
closest known year/month/day/hour/minute. For example:

• “2018-03-01T00:00:00Z” for someone born on an unknown day in March 2018

• “2018-01-01T00:00:00Z” for someone born on an unknown day in 2018

4.9. Individual 33

https://en.wikipedia.org/wiki/ISO_8601

phenopackets-schema Documentation, Release 10.0.0

• empty if unknown/ not stated.

See here for more information about timestamps.

The element is provided for use cases within protected networks, but it many situations the element should not be used
in order to protect the privacy of the individual. Instead, the Age element should be preferred.

4.9.4 age

An age object describing the age of the individual at the time of collection of biospecimens or phenotypic observations
reported in the current Phenopacket. It is specified using either an Age element, which can represent an Age in
several different ways, or an AgeRange element, which can represent a range of ages such as 10-14 years (age can be
represented in this was to protect privacy of study participants).

4.9.5 sex

Phenopackets make use of an enumeration to denote the phenotypic sex of an individual. See Sex.

4.9.6 karyotypic_sex

Phenopackets make use of an enumeration to denote the chromosomal sex of an individual. See KaryotypicSex.

4.9.7 taxonomy

For resources where there may be more than one organism being studied it is advisable to indicate the taxonomic
identifier of that organism, to its most specific level. We advise using the codes from the NCBI Taxonomy resource.
For instance, NCBITaxon:9606 is human (homo sapiens sapiens) and or NCBITaxon:9615 is dog.

4.10 KaryotypicSex

This enumeration represents the chromosomal sex of an individual.

Data model

Implementation note - this is an enumerated type, therefore the values represented below are the only legal values.
The value of this type SHALL NOT be null, instead it SHALL use the 0 (zero) ordinal element as the default value,
should none be specified.

Name Ordinal Description
UNKNOWN_KARYOTYPE 0 Untyped or inconclusive karyotyping
XX 1 Female
XY 2 Male
XO 3 Single X chromosome only
XXY 4 Two X and one Y chromosome
XXX 5 Three X chromosomes
XXYY 6 Two X chromosomes and two Y chromosomes
XXXY 7 Three X chromosomes and one Y chromosome
XXXX 8 Four X chromosomes
XYY 9 One X and two Y chromosomes
OTHER_KARYOTYPE 10 None of the above types

34 Chapter 4. Phenopacket building blocks

https://www.ncbi.nlm.nih.gov/taxonomy

phenopackets-schema Documentation, Release 10.0.0

4.11 MetaData

This element contains structured definitions of the resources and ontologies used within the phenopacket. It is consid-
ered to be a required element of a valid Phenopacket and application Q/C software should check this.

Data model

Table 4: Definition of the MetaData element
Field Type Status Description
created A Timestamp required Representation of the time

when this object was
created, e.g., 2019-04-
01T15:10:17.808Z

created_by string required Name of person who created the
phenopacket

submitted_by string optional Name of person who submitted
the phenopacket

resources list of Re-
source

required (See text)

updates list of rstup-
date

optional List of updates to the
phenopacket

phenopacket_schema_versionstring optional schema version of the current
phenopacket

external_referencesList of Exter-
nalReference

optional (See text)

The MetaData element MUST have one Resource element for each ontology or terminology whose terms are used in
the Phenopacket. For instance, if a MONDO term is used to specificy the disease and HPO terms are used to specificy
the phenotypes of a patient, then the MetaData element MUST have one Resource element each for MONDO and
HPO.

Example

{
"created": "2019-07-21T00:25:54.662Z",
"createdBy": "Peter R.",
"resources": [{
"id": "hp",
"name": "human phenotype ontology",
"url": "http://purl.obolibrary.org/obo/hp.owl",
"version": "2018-03-08",
"namespacePrefix": "HP",
"iriPrefix": "http://purl.obolibrary.org/obo/HP_"

}, {
"id": "geno",
"name": "Genotype Ontology",
"url": "http://purl.obolibrary.org/obo/geno.owl",
"version": "19-03-2018",
"namespacePrefix": "GENO",
"iriPrefix": "http://purl.obolibrary.org/obo/GENO_"

}, {
"id": "pubmed",
"name": "PubMed",
"namespacePrefix": "PMID",
"iriPrefix": "https://www.ncbi.nlm.nih.gov/pubmed/"

(continues on next page)

4.11. MetaData 35

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

}],
"externalReferences": [{
"id": "PMID:30808312",
"description": "Bao M, et al. COL6A1 mutation leading to Bethlem myopathy with

→˓recurrent hematuria: a case report. BMC Neurol. 2019;19(1):32."
}]

}

4.11.1 created

This element is a ISO8601 UTC timestamp for when this phenopacket was created in ISO, e.g., “2018-03-
01T00:00:00Z”.

4.11.2 created_by

This is a string that represents an identifier for the contributor/ program. The expected syntax and semantics are
application-dependent.

4.11.3 submitted_by

This is a string that represents an identifier for the person who submitted the phenopacket (who may not be the person
who created the phenopacket).

4.11.4 resources

This element contains a listing of the ontologies/resources referenced in the phenopacket.

4.11.5 updates

This element contains a list of rstupdate objects which contain information about when, what and who updated a
phenopacket. This is only necessary when a phenopacket is being used as a persistent record and is being continuously
updated. Resources should provide information about how this is being used.

4.11.6 phenopacket_schema_version

A string representing the version of the phenopacket-schema according to which a phenopacket was made.

4.11.7 external_references

A list of ExternalReference (such as the PubMed id of a publication from which a phenopacket was derived).

36 Chapter 4. Phenopacket building blocks

https://en.wikipedia.org/wiki/ISO_8601

phenopackets-schema Documentation, Release 10.0.0

4.12 OntologyClass

This element is used to represent classes (terms) from ontologies, and is used in many places throughout the
Phenopacket standard. It is a simple, two element message that represents the identifier and the label of an ontol-
ogy class.

The ID SHALL be a CURIE-style identifier e.g. HP:0100024, MP:0001284, UBERON:0001690, i.e., the primary key
for the ontology class. The label should be the corresponding class name. The Phenopacket standard REQUIRES
that the id and the label match in the original ontology. We note that occasionally, ontology maintainers change the
primary label of a term.

Data model

Field Type Status Description
id string required a CURIE-style identifier e.g. HP:0001875
label string required human-readable class name e.g. Neutropenia

Example

{
"id": "HP:0001875",
"label": "Neutropenia"

}

4.12.1 id

The ID of an OntologyClass element MUST take the form of a CURIE format. In order that the class is resolvable, it
MUST reference the namespace prefix of a Resource named in the MetaData.

4.12.2 label

The the human-readable label for the concept. This MUST match the ID in the ontology referenced by the namespace
prefix in a Resource named in the MetaData.

4.13 Pedigree

This element is used to represent a pedigree to describe the family relationships of each sample along with their
gender and phenotype (affected status). PED files are typically used by software for genetic linkage analysis. The
phenopacket schema uses conventions similar to those of PED files to promote interoperability between existing PED
files and PED software, but does not actually store a PED file. See the detailed description at the PLINK website for
more information about PED files.

The information in this element can be used by programs for analysis of a multi-sample VCF file with exome or
genome sequences of members of a family, some of whom are affected by a Mendelian disease.

Data model

Field Type Status Description
persons list of Person required list of family members in this pedi-

gree

4.12. OntologyClass 37

http://zzz.bwh.harvard.edu/plink/data.shtml

phenopackets-schema Documentation, Release 10.0.0

The pedigree is simply a list of Person objects. These objects are meant to reflect the elements of a PED file.

4.13.1 Person

Table 5: Definition of the Person element
Field Type Status Description
family_id string required application specific identifier
individual_id string required application specific identifier
paternal_id string required application specific identifier
maternal_id string required application specific identifier
sex Sex required see text
affected_status AffectedStatus required see text

Example

{
"persons": [

{
"familyId": "family 1",
"individualId": "kindred 1A",
"paternalId": "FATHER",
"maternalId": "MOTHER",
"sex": "MALE",
"affectedStatus": "AFFECTED"

},
{

"familyId": "family 1",
"individualId": "kindred 1B",
"paternalId": "FATHER",
"maternalId": "MOTHER",
"sex": "FEMALE",
"affectedStatus": "AFFECTED"

},
{

"familyId": "family 1",
"individual_id": "MOTHER",
"paternalId": "0",
"maternalId": "0",
"sex": "FEMALE",
"affectedStatus": "UNAFFECTED"

},
{

"familyId": "family 1",
"individualId": "FATHER",
"sex": "MALE",
"paternalId": "0",
"maternalId": "0",
"affectedStatus": "UNAFFECTED"

}
]

}

38 Chapter 4. Phenopacket building blocks

phenopackets-schema Documentation, Release 10.0.0

4.13.2 AffectedStatus

This element is an enumeration to

Name Description
MISSING It is unknown if the individual has the affected phenotype
UNAFFECTED The individual does not show the affected phenotype of the proband
AFFECTED The individual has the affected phenotype of the proband

In a PED file, affected persons are encoded with “2”, and unaffecteds by “1” (a “0” is used if no information is
available). Instead, Phenopackets uses an enumeration as shown in the table. In a PED file, the sex of individuals is
encoded as a “1” for females, “2” for males, and “0” for unknown. Phenopackets uses Sex instead.

The message is made up of a list of Person elements (the Person element is defined within the Pedigree element).
Each Person element is equivalent to one row of a PED file.

The family ID and the individual IDs may be made up of letters and digits, and the combination of family and individual
ID should uniquely identify each person represented in the PED file. The parents of a person in the pedigree are shown
with the corresponding individual IDs. Individuals whose parents are not represented in the PED file are known as
founders; their parents are represented by a zero (“0”) in the columns for mother and father. Finally, the sex and the
affected (disease) status of the person are shown.

If a Phenopacket is used to represent any of the individuals listed in the Pedigree, then it is essential that
the individual_id used in the pedigree matches the id of the subject of the Phenopacket. It is al-
lowable for the Pedigree to have individuals that do not have an associated Phenopacket. This is useful,
for instance, if the Pedigree is being used to store the affected/not affected status of family members being ex-
amined by exome or genome sequencing. In this case (i.e. where there are no associated phenopackets for the
Pedigree.individual_id), it is expected that the individual_id elements match the sample identifiers of
the exome/genome file.

The Pedigree object does not support reporting multiple phenotypes in one individual. The phenotype represented by
the affectation status is whether the disease is present or not. If this is desired, then one would have to create full
phenopackets for each individual in a family.

4.14 PhenotypicFeature

This element is intended to be used to describe a phenotype that characterizes the subject of the Phenopacket. For
medical use cases the subject will generally be a patient or a proband of a study, and the phenotypes will be abnor-
malities described by an ontology such as the Human Phenotype Ontology. The word phenotype is used with many
different meanings including disease entity, but in this context we mean An individual phenotypic feature, observed as
either present or absent (negated), with possible onset, modifiers and frequency.

Data model

4.14. PhenotypicFeature 39

http://www.human-phenotype-ontology.org

phenopackets-schema Documentation, Release 10.0.0

Field Type Status Description
descrip-
tion

string optional human-readable verbiage NOT for structured text

type OntologyClass required
negated boolean optional defaults to false
severity OntologyClass optional description of the severity of the feature described in type represent-

ing HP:0012824
modifier list of Ontology-

Class
optional representing one or more terms from HP:0012823

onset OntologyClass optional HP:0003674 HP:0011462
evidence Evidence recom-

mended
the evidence for an assertion of the observation of a type

Example

{
"type": {

"id": "HP:0000520",
"label": "Proptosis"

},
"severity": {

id": "HP:0012825",
"label": "Mild"

}
"classOfOnset": {

"id": "HP:0003577",
"label": "Congenital onset"

}
}

4.14.1 description

This element represents a free-text description of the phenotype. It should not be used as the primary means of
describing the phenotype, but can be used to supplement the record if ontology terms are not sufficiently able to
capture all the nuances. In general, the type and onset etc. . . fields should be used for this purpose, and this field is a
last resort.

4.14.2 type

The element represents the primary ontology class which describes the phenotype. For example Craniosynostosis
(HP:0001363).

4.14.3 negated

This element is a flag to indicate whether the phenotype was observed or not. The default is ‘false’, in other words
the phenotype was observed. Therefore it is only required in cases to indicate that the phenotype was looked for, but
found to be absent.

40 Chapter 4. Phenopacket building blocks

https://hpo.jax.org/app/browse/term/HP:0012824
https://hpo.jax.org/app/browse/term/HP:0012823
https://hpo.jax.org/app/browse/term/HP:0011462
https://hpo.jax.org/app/browse/term/HP:0001363
https://hpo.jax.org/app/browse/term/HP:0001363

phenopackets-schema Documentation, Release 10.0.0

4.14.4 severity

This element is an ontology class that describes the severity of the condition e.g. subclasses of Severity (HP:0012824)
or SNOMED:272141005-Severities

4.14.5 modifier

This element is a list of ontology class elements that can be empty or contain one or more ontology terms that are
intended to provide more expressive or precise descriptions of a phenotypic feature, including attributes such as posi-
tionality and external factors that tend to trigger or ameliorate the feature. Terms can be taken from the hierarchy of
Clinical modifier in the HPO (noting that severity should be coded in the severity element).

4.14.6 onset

This element can be used to describe the age at which a phenotypic feature was first noticed or diagnosed. For many
medical use cases, either the Age sub-element or an ontology class (e.g., from the HPO Onset (HP:0003674) terms)
will be used.

4.14.7 evidence

This element is recommended and contain one or more Evidence elements that specify how the phenotype was deter-
mined.

4.15 Procedure

The Procedure element represents a clinical procedure performed on a subject in order to extract a biosample.

If the Procedure element is used, it must contain a code element, but only need contain the body_site element if
needed.

Data model

Field Type Status Description
code OntologyClass required clinical procedure performed on a subject
body_site OntologyClass optional specific body site if unable to represent this is the code

Example

{
"code" {

"id": "NCIT:C28743",
"label": "Punch Biopsy"

},
"bodySite" {

"id": "UBERON:0003403",
"label": "skin of forearm"

}
}

4.15. Procedure 41

https://hpo.jax.org/app/browse/term/HP:0012824
https://phinvads.cdc.gov/vads/ViewCodeSystemConcept.action?oid=2.16.840.1.113883.6.96&code=272141005
https://hpo.jax.org/app/browse/term/HP:0012823
https://hpo.jax.org/app/browse/term/HP:0003674

phenopackets-schema Documentation, Release 10.0.0

4.15.1 code

This element is an OntologyClass that represents clinical procedure performed on a subject. For instance, Biopsy of
Soft Palate would be represented as follows.

{
"code": {

"id": "NCIT:C51585",
"label": "Biopsy of Soft Palate"

}
}

4.15.2 body site

In cases where it is not possible to represent the procedure adequately with a single OntologyClass, the body site
should be indicated using a separate ontology class. For instance, the following indicates a punch biopsy on the skin
of the forearm.

{
"code" {

"id": "NCIT:C28743",
"label": "Punch Biopsy"

},
"bodySite" {

"id": "UBERON:0003403",
"label": "skin of forearm"

}
}

4.16 Resource

The Resource element is a description of an external resource used for referencing an object. For example the
resource may be an ontology such as the HPO or SNOMED or another data resource such as the HGNC or ClinVar.

A Resource is used to contain data used to expand CURIE identifiers when used in an id field. This is known as
Identifier resolution.

The MetaData element uses one resource element to describe each resource that is referenced in the Phenopacket.

Data model

Field Type Status Description
id string required hp
name string required human phenotype ontology
namespace_prefix string required HP
url string required http://purl.obolibrary.org/obo/hp.owl
version string required 2018-03-08
iri_prefix string required http://purl.obolibrary.org/obo/HP_

Example

For an ontology, the url SHALL point to the obo or owl file, e.g. This information can also be found at the EBI
Ontology Lookup Service

42 Chapter 4. Phenopacket building blocks

https://www.ebi.ac.uk/ols/ontologies/ncit/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCIT_C51585
https://www.ebi.ac.uk/ols/ontologies/ncit/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCIT_C51585
http://purl.obolibrary.org/obo/hp.owl
http://purl.obolibrary.org/obo/
https://www.ebi.ac.uk/ols/ontologies

phenopackets-schema Documentation, Release 10.0.0

{
"id": "so",
"name": "Sequence types and features",
"url": "http://purl.obolibrary.org/obo/so.owl",
"version": "2015-11-24",
"namespacePrefix": "SO",
"iriPrefix": "http://purl.obolibrary.org/obo/SO_"

}

Non-ontology resources which DO use CURIEs as their native identifiers should be treated in a similarly resolvable
manner.

{
"id": "hgnc",
"name": "HUGO Gene Nomenclature Committee",
"url": "https://www.genenames.org",
"version": "2019-08-08",
"namespacePrefix": "HGNC",
"iriPrefix": "https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/"

}

Using this Resource definition it is possible for software to resolve the identifier HGNC:12805 to https://www.
genenames.org/data/gene-symbol-report/#!/hgnc_id/12805

Non-ontology resources which DO NOT use CURIEs as their native identifiers MUST use the namespace from iden-
tifiers.org, when present. For example the UniProt Knowledgebase (https://registry.identifiers.org/registry/uniprot)

{
"id": "uniprot",
"name": "UniProt Knowledgebase",
"url": "https://www.uniprot.org",
"version": "2019_07",
"namespacePrefix": "uniprot",
"iriPrefix": "https://purl.uniprot.org/uniprot/"

}

Using this Resource definition it is possible for software to resolve the identifier uniprot:Q8H0D3 to https://purl.
uniprot.org/uniprot/Q8H0D3

4.16.1 id

For OBO ontologies, the value of this string MUST always be the official OBO ID, which is always equivalent to the
ID prefix in lower case. Examples: hp, go, mp, mondo Consult http://obofoundry.org for a complete list.

For other resources which do not use native CURIE identifiers (e.g. SNOMED, UniProt, ClinVar), use the prefix in
identifiers.org.

4.16.2 name

The name of the ontology referred to by the id element, for example, The Human Phenotype Ontology. For OBO
Ontologies, the value of this string SHOULD be the same as the title field on http://obofoundry.org

Other resources should use the official title for that resource. Note that this field is purely for information purposes
and software should not encode any assumptions.

4.16. Resource 43

https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/12805
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/12805
https://registry.identifiers.org/registry/uniprot
https://purl.uniprot.org/uniprot/Q8H0D3
https://purl.uniprot.org/uniprot/Q8H0D3
http://obofoundry.org
http://identifiers.org/
http://obofoundry.org

phenopackets-schema Documentation, Release 10.0.0

4.16.3 url

For OBO ontologies, this MUST be the PURL, e.g. http://purl.obolibrary.org/obo/hp.owl or http://purl.obolibrary.org/
obo/hp.obo

Other resources should link to the official or top-level url e.g. https://www.uniprot.org or https://www.genenames.org

4.16.4 version

The version of the resource or ontology used to make the annotation. For OBO ontologies, this SHALL be the
versionIRI. For other resources this should be the native version of the resource, e.g UniProt - “2019_08”, DbSNP -
“153” for resources without release versions, this field should be left blank.

4.16.5 namespace_prefix

The prefix used in the CURIE of an OntologyClass e.g. HP, MP, ECO for example an HPO term will have a CURIE
like this - HP:0012828 which should be used in combination with the iri_prefix to form a fully-resolvable IRI.

4.16.6 iri_prefix

The full IRI prefix which can be used with the namespace_prefix and the OntologyClass::id to resolve to an IRI for
a term. Tools such as the curie-util (https://github.com/prefixcommons/curie-util) can utilise this to produce fully-
resolvable IRIs for an OntologyClass.

4.16.7 CURIE

The CURIE is defined by the W3C as a means of encoding a “Compact URI”. It is a simple string taking the form of
colon (:) separated prefix and reference elements - prefix:reference e.g. HP:0012828 or HGNC:12805.

It is RECOMMENDED to use CURIE identifiers where possible.

Not all resources use CURIEs as identifiers (e.g. SNOMED, UniProt, ClinVar, PubMed). In these cases it is often
possible to create a CURIE form of an identifier by using the prefix for that resource from identifiers.org.

Where no CURIE prefix is present in identifiers.org it is possible for a Resource to define a locally-scoped namespace,
although if a Phenopacket is being shared publicly this is NOT recommended if the resource is not publicly resolvable.

When using a CURIE identifier a corresponding Resource SHALL also be included in the MetaData section.

4.16.8 Identifier resolution

A CURIE identifier can be resolved to an external resource using the Resource element by looking-up the CURIE
prefix against the Resource::namespacePrefix and then appending the CURIE reference to the Resource::iriPrefix.

For example, using the HPO term encoding the concept of ‘Severe’, using this instance of an OntologyClass:

{
"id": "HP:0012828",
"label": "Severe",

}

and this instance of a Resource:

44 Chapter 4. Phenopacket building blocks

http://purl.obolibrary.org/obo/hp.owl
http://purl.obolibrary.org/obo/hp.obo
http://purl.obolibrary.org/obo/hp.obo
https://www.uniprot.org
https://www.genenames.org
https://www.w3.org/TR/curie/
https://www.w3.org/
http://identifiers.org/
http://identifiers.org/

phenopackets-schema Documentation, Release 10.0.0

{
"id": "hp",
"name": "Human Phenotype Ontology",
"url": "http://purl.obolibrary.org/obo/hp.owl",
"version": "17-06-2019",
"namespacePrefix": "HP",
"iriPrefix": "http://purl.obolibrary.org/obo/HP_"

}

The id HP:0012828 can be split into the prefix - ‘HP’ and reference - ‘0012828’. The ‘HP’ prefix matches the Re-
source::namespacePrefix so we can append the reference ‘0012828’ to the Resource::iriPrefix: which produces the
URI

http://purl.obolibrary.org/obo/HP_0012828

the term can be resolved to http://purl.obolibrary.org/obo/HP_0012828

4.17 Sex

An enumeration used to represent the sex of an individual. This element does not represent gender identity or Kary-
otypicSex, but instead represents typical “phenotypic sex”, as would be determined by a midwife or physician at birth.

Data model

Implementation note - this is an enumerated type, therefore the values represented below are the only legal values.
The value of this type SHALL NOT be null, instead it SHALL use the 0 (zero) ordinal element as the default value,
should none be specified.

Name Ordi-
nal

Description

UN-
KNOWN_SEX

0 Not assessed or not available. Maps to NCIT:C17998

FEMALE 1 female sex. Maps to NCIT:C46113
MALE 2 male sex. Maps to NCIT:C46112
OTHER_SEX 3 It is not possible to accurately assess the applicability of MALE/FEMALE. Maps to

NCIT:C45908

Example

{
"sex": "UNKNOWN_SEX"

}

4.18 Variant

This element should be used to describe candidate variants or diagnosed causative variants. There is currently no
standard variant nomenclature that can represent all kinds of genetic variation that is relevant to human medicine,
science, and model organisms. Therefore, we represent variants using the keyword oneof, which is used in protobuf
for an item with many optional fields where at most one field will be set at the same time. Variant messages contain
an allele and the zygosity of the allele.

4.17. Sex 45

http://purl.obolibrary.org/obo/HP_0012828
http://purl.obolibrary.org/obo/HP_0012828
https://www.ebi.ac.uk/ols/ontologies/ncit/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCIT_C17998
https://www.ebi.ac.uk/ols/ontologies/ncit/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCIT_C46113
https://www.ebi.ac.uk/ols/ontologies/ncit/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCIT_C46112
https://www.ebi.ac.uk/ols/ontologies/ncit/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FNCIT_C45908

phenopackets-schema Documentation, Release 10.0.0

Alleles can be listed using HGVS, VCF, SPDI or ISCN notation. The phenopacket schema will implement the GA4GH
Variation Representation Specification once that is mature. The VR-Spec will be the recommended option in some
settings.

• See: https://vr-spec.readthedocs.io/en/1.0rc/

• See: https://github.com/ga4gh-beacon/specification/blob/master/beacon.yaml

The Variant element itself is an optional element of a Phenopacket or Biosample. If it is present, the
Phenopacket standard has the following requirements.

Alleles can refer to external sources, for example the ClinGen allele registry, ClinVar, dbSNP, dbVAR etc. using the
id field. It is RECOMMENDED to use a CURIE identifier and corresponding Resource.

n.b. phase information for alleles are not represented in this model.

Data model

Field Type Status Description
allele allele required one of the Allele types described below
zygosity OntologyClass recommended See zygosity below

Example

{
"spdiAllele": {
"id": "clinvar:13294"
"seqId": "NC_000010.10",
"position": 123256214,
"deletedSequence": "T",
"insertedSequence": "G"

},
"zygosity": {
"id": "GENO:0000135",
"label": "heterozygous"

}
}

4.18.1 zygosity

The zygosity of the variant as determined in all of the samples represented in this Phenopacket is represented using
a list of terms taken from the Genotype Ontology (GENO). For instance, if a variant affects one of two alleles at a
certain locus, we could record the zygosity using the term heterozygous (GENO:0000135).

4.18.2 allele

The allele element is required and can be one and only one of HgvsAllele, VcfAlelle, SpdiAllele or
IcsnAllele.

4.18.3 HgvsAllele

This element is used to describe an allele according to the nomenclature of the Human Geneome Variation Society
(HGVS). For instance, NM_000226.3:c.470T>G indicates that a T at position 470 of the sequence represented by
version 3 of NM_000226 (which is the mRNA of the human keratin 9 gene KRT9).

46 Chapter 4. Phenopacket building blocks

https://github.com/ga4gh/vr-spec
https://github.com/ga4gh/vr-spec
https://vr-spec.readthedocs.io/en/1.0rc/
https://github.com/ga4gh-beacon/specification/blob/master/beacon.yaml
https://www.ebi.ac.uk/ols/ontologies/geno
https://www.ebi.ac.uk/ols/ontologies/geno/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FGENO_0000135
http://www.hgvs.org/
http://www.hgvs.org/
https://www.ncbi.nlm.nih.gov/nuccore/NM_000226.3

phenopackets-schema Documentation, Release 10.0.0

We recommend using a tool such as VariantValidator or Mutalyzer to validate the HGVS string. See the HGVS
recommendations for details about the HGVS nomenclature.

Data model

Field Type Status Description
id string recommended An arbitrary identifier
hgvs string required NM_000226.3:c.470T>G

Example

{
"id": "",
"hgvs": "NM_000226.3:c.470T>G"

}

4.18.4 VcfAllele

This element is used to describe variants using the Variant Call Format, which is in near universal use for exome,
genome, and other Next-Generation-Sequencing-based variant calling. It is an appropriate option to use for variants
reported according to their chromosomal location as derived from a VCF file.

In the Phenopacket format, it is expected that one VcfAllele message described a single allele (in contrast to the
actual VCF format that allows multiple alleles at the same position to be reported on the same line; to report these in
Phenopacket format, two variant messages would be required).

For structural variation the INFO field should contain the relevant information . In general, the info field should only
be used to report structural variants and it is not expected that the Phenopacket will report the contents of the info field
for single nucleotide and other small variants.

Data model

Field Type Status Description
genome_assembly string required GRCh38
id string recommended An arbitrary identifier
chr string required chr2
pos int32 required 134327882
re string required A
alt string required C
info string optional END=43500;SVTYPE=DUP;CHR2=1;SVLEN=29000;

Example

{
"genome_assembly": "GRCh38",
"chr": "2",
"id": ".",
"pos": 134327882,
"ref": "A",
"alt": "<DUP>",
"info": "END=43500;SVTYPE=DUP;CHR2=1;SVLEN=29000;",

}

4.18. Variant 47

https://variantvalidator.org/
https://mutalyzer.nl/
http://varnomen.hgvs.org/recommendations/DNA/variant/alleles/
http://varnomen.hgvs.org/recommendations/DNA/variant/alleles/
https://samtools.github.io/hts-specs/VCFv4.3.pdf

phenopackets-schema Documentation, Release 10.0.0

4.18.5 SpdiAllele

This option can be used as an alternative to the VcfAllele, and describes variants using the Sequence Position Deletion
Insertion (SPDI) notation. We recommend that users familiarize themselves with this relatively new notation, which
differs in important ways from other standards such as VCF and HGVS.

Tools for interconversion between SPDI, HGVS and VCF exist at the NCBI.

SPDI stands for

1. S = SequenceId

2. P = Position , a 0-based coordinate for where the Deleted Sequence starts

3. D = DeletedSequence , sequence for the deletion, can be empty

4. I = InsertedSequence , sequence for the insertion, can be empty

For instance, Seq1:4:A:G refers to a single nucleotide variant at the fifth nucleotide (nucleotide 4 according to
zero-based numbering) from an A to a G. See the SPDI webpage for more examples.

The SPDI notation represents variation as deletion of a sequence (D) at a given position (P) in reference sequence
(S) followed by insertion of a replacement sequence (I) at that same position. Position 0 indicates a deletion that
starts immediately before the first nucleotide, and position 1 represents a deletion interval that starts between the first
and second residues, and so on. Either the deleted or the inserted interval can be empty, resulting a pure insertion or
deletion.

Note that the deleted and inserted sequences in SPDI are all written on the positive strand for two-stranded molecules.

Data model

Field Type Status Description
id string recommended An arbitrary identifier
seq_id string required Seq1
position int32 required 4
deleted_sequence string required A
inserted_sequence string required G

Example

{
"id": 1,
"seqId": "NC_000001.10",
"position": 12346,
"deletedSequence": "",
"insertedSequence": "T"

}

4.18.6 IscnAllele

This element can be used to describe cytogenetic anomalies according to the International System for Human Cyto-
genetic Nomenclature (ISCN), an international standard for human chromosome nomenclature, which includes band
names, symbols and abbreviated terms used in the description of human chromosome and chromosome abnormalities.

For example del(6)(q23q24) describes a deletion from band q23 to q24 on chromosome 6.

Data model

48 Chapter 4. Phenopacket building blocks

https://www.ncbi.nlm.nih.gov/variation/notation/
https://www.ncbi.nlm.nih.gov/variation/notation/
https://api.ncbi.nlm.nih.gov/variation/v0/
https://www.ncbi.nlm.nih.gov/variation/notation/
https://www.ncbi.nlm.nih.gov/pubmed/?term=18428230
https://www.ncbi.nlm.nih.gov/pubmed/?term=18428230

phenopackets-schema Documentation, Release 10.0.0

Field Type Status Description
id string recommended An arbitrary identifier
iscn string required t(8;9;11)(q12;p24;p12)

Example

{
"id": "ISCN:12345",
"iscn": "t(8;9;11)(q12;p24;p12)"

}

4.18. Variant 49

phenopackets-schema Documentation, Release 10.0.0

50 Chapter 4. Phenopacket building blocks

CHAPTER 5

Working with Phenopackets

The phenopacket schema has been introduced in Phenopacket Schema and can be considered the source of truth
for the specification. While it is possible to inter-operate with other services using JSON produced from hand-
crafted/alternative implementations, we strongly suggest using the schema to compile any required language im-
plementations.

5.1 Example code

We provide several examples that demonstrate how to work with Phenopackets in Java and C++. There are also Python
examples in the source code test directory. All three langauge implementations are automatically produced as part of
the build (Java Build).

5.1.1 Working with Phenopackets in Java

Here we provide some guidance on how to work with Phenopackets in Java. The sections on Java Build, Exporting
and Importing Phenopackets provide general guidance about using Java to work with phenopackets. The following
sections provide a few examples of how to build various elements of Phenopackets. Finally, we present the full Java
code used to build each of the three examples for Rare Disease, cancer, and model organism phenotypes. TODO.

Java Build

Most users of phenopackets-schema in Java should use maven central to include the phenopackets-schema package.

Setting up the Java build

To include the phenopackets-schema package from maven central, add the following to the pom file

Define the phenopackets.version in the properties section of the pom.xml file.

51

phenopackets-schema Documentation, Release 10.0.0

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
...
<phenopackets.version>1.0.0</phenopackets.version>

</properties>

Then put the following stanza into the dependencies section of the maven pom.xml file.

<dependency>
<groupId>org.phenopackets</groupId>
<artifactId>phenopacket-schema</artifactId>
<version>${phenopackets.version}</version>

</dependency>

Building phenopackets-schema locally

Users can also download phenopackets-schema from its GitHub repository and install it locally.

$ git clone https://github.com/phenopackets/phenopacket-schema
$ cd phenopacket-schema
$ mvn compile
$ mvn install

Exporting and Importing Phenopackets

It is easy to export Phenopackets in JSON, YAML, or protobuf format. Bear in mind that protobuf was designed as
a wire-format allowing for ‘schema evolution’ so this is safest to use in this environment. It would be advisable to
store your data in a datastore with a schema relevant to your requirements and be able to map that to the relevant
Phenopacket message types for exchange with your users/partners. If you don’t it is possible that breaking changes to
the schema will mean you cannot exchange data with parties using a later version of the schema or if you update the
schema your tools are using they will no longer be able to read your data written using the previous version. While
protobuf allows for ‘schema evolution’ by design which will limit the impact of changes to the schema precipitating
this scenario, it is nonetheless a possibility which the paranoid might wish to entertain.

JSON export

In many situations it may be desirable to export the Phenopacket as JSON. This is easy with the following commands
(we show how to create a Phenopacket in Java elsewhere).

import org.phenopackets.schema.v1.Phenopacket;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;

Phenopacket phenoPacket = // create a Phenopacket
try {

String jsonString = JsonFormat.printer().includingDefaultValueFields().print(pp);
System.out.println(jsonString);

} catch (IOException e) {
e.printStackTrace();

}

52 Chapter 5. Working with Phenopackets

https://github.com/phenopackets/phenopacket-schema
https://en.wikipedia.org/wiki/JSON

phenopackets-schema Documentation, Release 10.0.0

YAML export

YAML (YAML Ain’t Markup Language) is a human friendly data serialization standard for all programming
languages.

import org.phenopackets.schema.v1.Phenopacket;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import com.fasterxml.jackson.dataformat.yaml.YAMLMapper;

Phenopacket phenoPacket = // create a Phenopacket
try {

String jsonString = JsonFormat.printer().includingDefaultValueFields().
→˓print(phenoPacket);

JsonNode jsonNodeTree = new ObjectMapper().readTree(jsonString);
String yamlString = new YAMLMapper().writeValueAsString(jsonNodeTree);
System.out.println(yamlString);

} catch (IOException e) {
e.printStackTrace(); // or handle the Exception as appropriate

}

Protobuf export

For most use case, we recommend using JSON as the serialization format for Phenopackets. Protobuf is more space
efficient than JSON but it is a binary format that is not human readable.

import org.phenopackets.schema.v1.Phenopacket;
import java.io.IOException;

Phenopacket phenoPacket = // create a Phenopacket
try {

phenoPacket.writeTo(System.out);
} catch (IOException e) {

e.printStackTrace(); // or handle the Exception as appropriate
}

We can write to any OutputStream (replace System.out in the above code), e.g. a file or network.

Importing Phenopackets (JSON format)

There are multiple ways of doing this with different JSON libraries e.g. Jackson, Gson, JSON.simple. . . . The follow-
ing code explains how to convert the JSON String object into a protobuf class. This isn’t limited to a Phenopacket
message, so long as you know the type of message contained in the json, you can merge it into the correct Java
representation.

String phenopacketJsonString = // Phenopacket in JSON as a String;
try {

Phenopacket.Builder phenoPacketBuilder = Phenopacket.newBuilder();
JsonFormat.parser().merge(jsonString, phenoPacketBuilder);
Phenopacket phenopacket = phenoPacketBuilder.build();
// do something with phenopacket ...

} catch (IOException e1) {
e1.printStackTrace(); // or handle the Exception as appropriate

}

5.1. Example code 53

https://yaml.org/

phenopackets-schema Documentation, Release 10.0.0

Evidence (Java)

The evidence code is used to document the support for an assertion. Here, we will show an example for the assertion
that flexion contractures are found in stiff skin syndrome.

import org.phenopackets.schema.v1.core.Evidence;
import org.phenopackets.schema.v1.core.ExternalReference;
import org.phenopackets.schema.v1.core.OntologyClass;

OntologyClass publishedClinicalStudy = OntologyClass.
newBuilder().
setId("ECO:0006017").
setLabel("author statement from published clinical study used in manual

→˓assertion").
build();

ExternalReference reference = ExternalReference.newBuilder().
setId("PMID:20375004").
setDescription("Mutations in fibrillin-1 cause congenital scleroderma:

→˓stiff skin syndrome").
build();

Evidence evidence = Evidence.newBuilder().
setEvidenceCode(publishedClinicalStudy).
setReference(reference).
build();

This code produces the following Evidence element.

{
evidence_code {

id: "ECO:0006017"
label: "author statement from published clinical study used in manual

→˓assertion"
}
reference {

id: "PMID:20375004"
description: "Mutations in fibrillin-1 cause congenital scleroderma: stiff

→˓skin syndrome"
}

}

Timestamp (Java)

A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds
and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January
1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one (see Unix
time).

A timestamp is required for several elements of the Phenopacket including the MetaData. Usually, code will create a
timestamp to represent the current time (the time at which the Phenopacket is being created).

import com.google.protobuf.Timestamp;

long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)

.setNanos((int) ((millis % 1000) * 1000000)).build();

54 Chapter 5. Working with Phenopackets

https://omim.org/entry/184900
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time

phenopackets-schema Documentation, Release 10.0.0

It is also possible to create a timestamp for an arbitrary date. For instance, the following code creates a timepoint for
an important date in English history.

import com.google.protobuf.Timestamp;
import java.text.SimpleDateFormat;
import java.util.Date;

SimpleDateFormat formatter = new SimpleDateFormat("yyyy-MM-dd");
String hastings = "1066-10-14";
Date date = formatter.parse(hastings);
long millis = date.getTime();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)

.setNanos((int) ((millis % 1000) * 1000000)).build();

If more precision is desired, use the following format

SimpleDateFormat formatter = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

The Java code

We show some Java code that demonstrates the basic methodology for building a Phenopacket. We have put the entire
code into one function for didactic purposes, but real-life code might be more structured. We do define one auxialliary
function

/** convenience function to help creating OntologyClass objects. */
public static OntologyClass ontologyClass(String id, String label) {

return OntologyClass.newBuilder()
.setId(id)
.setLabel(label)
.build();

}

With this, we present a function that creates a Phenopacket that represents the case report described above

public Phenopacket spherocytosisExample() {
final String PROBAND_ID = "PROBAND#1";
final OntologyClass FEMALE = ontologyClass("PATO:0000383", "female");
PhenotypicFeature spherocytosis = PhenotypicFeature.newBuilder()

.setType(ontologyClass("HP:0004444", "Spherocytosis"))

.setClassOfOnset(ontologyClass("HP:0011463", "Childhood onset"))

.build();
PhenotypicFeature jaundice = PhenotypicFeature.newBuilder()

.setType(ontologyClass("HP:0000952", "Jaundice"))

.setClassOfOnset(ontologyClass("HP:0011463", "Childhood onset"))

.build();
PhenotypicFeature splenomegaly = PhenotypicFeature.newBuilder()

.setType(ontologyClass("HP:0001744", "Splenomegaly"))

.setClassOfOnset(ontologyClass("HP:0011463", "Childhood onset"))

.build();
PhenotypicFeature notHepatomegaly = PhenotypicFeature.newBuilder()

.setType(ontologyClass("HP:0002240", "Hepatomegaly"))

.setNegated(true)

.build();
PhenotypicFeature reticulocytosis = PhenotypicFeature.newBuilder()

.setType(ontologyClass("HP:0001923", "Reticulocytosis"))

.build();

(continues on next page)

5.1. Example code 55

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

Variant ANK1_variant = Variant.newBuilder()
.setSequence("NM_001142446.1")
.setPosition(5620)
.setDeletion("C")
.setInsertion("T")
.setHgvs("NM_001142446.1:c.5620C>T ")
.putSampleGenotypes(PROBAND_ID, ontologyClass("GENO:0000135",

→˓"heterozygous"))
.build();

Individual proband = Individual.newBuilder()
.setSex(FEMALE)
.setId(PROBAND_ID)
.setAgeAtCollection(Age.newBuilder().setAge("P27Y3M").build())
.addPhenotypicFeatures(spherocytosis)
.addPhenotypicFeatures(jaundice)
.addPhenotypicFeatures(splenomegaly)
.addPhenotypicFeatures(notHepatomegaly)
.addPhenotypicFeatures(reticulocytosis)
.build();

MetaData metaData = MetaData.newBuilder()
.addResources(Resource.newBuilder()

.setId("hp")

.setName("human phenotype ontology")

.setNamespacePrefix("HP")

.setIriPrefix("http://purl.obolibrary.org/obo/HP_")

.setUrl("http://purl.obolibrary.org/obo/hp.owl")

.setVersion("2018-03-08")

.build())
.addResources(Resource.newBuilder()

.setId("pato")

.setName("Phenotype And Trait Ontology")

.setNamespacePrefix("PATO")

.setIriPrefix("http://purl.obolibrary.org/obo/PATO_")

.setUrl("http://purl.obolibrary.org/obo/pato.owl")

.setVersion("2018-03-28")

.build())
.addResources(Resource.newBuilder()

.setId("geno")

.setName("Genotype Ontology")

.setNamespacePrefix("GENO")

.setIriPrefix("http://purl.obolibrary.org/obo/GENO_")

.setUrl("http://purl.obolibrary.org/obo/geno.owl")

.setVersion("19-03-2018")

.build())
.setCreatedBy("Example clinician")
.build();

return Phenopacket.newBuilder()
.setSubject(proband)
.addAllVariants(ImmutableList.of(ANK1_variant))
.setMetaData(metaData)
.build();

}

56 Chapter 5. Working with Phenopackets

phenopackets-schema Documentation, Release 10.0.0

Writing a Phenopacket in protobuf format

Messages can be written in binary format using the native protobuf encoding. While this is useful for machine-to-machine
communication due to low latency and overhead of serialisation it is not human-readable. We refer the reader
to the official documentation on this topic, but will briefly give an example of writing to an OutputStream
here.

Path path = Paths.get("/path/to/file");
try (OutputStream outputStream = Files.newOutputStream(path)) {

Phenopacket phenoPacket = new PhenoPacketExample().spherocytosisExample();
phenoPacket.writeTo(outputStream);

} catch (IOException e) {
e.printStackTrace();

}

// read it back again
try (InputStream inputStream = Files.newInputStream(path)) {

Phenopacket deserialised = Phenopacket.parseFrom(inputStream);
} catch (IOException e) {

e.printStackTrace();
}

JSON export

In many situations it may be desirable to export the Phenopacket as JSON. This is easy with the following commands:

First add the protobuf-java-util dependency to your Maven POM.xml

<dependency>
<groupId>com.google.protobuf</groupId>
<artifactId>protobuf-java-util</artifactId>
<version>${protobuf.version}</version>
<scope>test</scope>

</dependency>

Then you can use it to print out JSON using the JsonFormat class.

Phenopacket p = spherocytosisExample();
try {

String jsonString = JsonFormat.printer().includingDefaultValueFields().print(p);
System.out.println(jsonString);

} catch (Exception e) {
e.printStackTrace();

}

5.1.2 Working with Phenopackets in C++

Here we provide some guidance on how to work with Phenopackets in C++.

Generating the C++ files

The maven build generates Java, C++, and Python code that can be directly used in other projects. Therefore, if you
have maven set up on your machine, the easiest way to generate the C++ files is

5.1. Example code 57

https://developers.google.com/protocol-buffers/docs/javatutorial#parsing-and-serialization
https://en.wikipedia.org/wiki/JSON

phenopackets-schema Documentation, Release 10.0.0

$ mvn compile
$ mvn package

This will generate four files in the following location.

$ ls target/generated-sources/protobuf/cpp/
base.pb.cc phenopackets.pb.cc
base.pb.h phenopackets.pb.h

The other option is to use Google’s protoc tool to generate the C++ files (The tool can be obtained from the Protobuf
website Install the tool using commands appropriate to your system). The following commands will generate identical
files in a new directory called gen.

$ mkdir gen
$ protoc \

--proto_path=src/main/proto/ \
--cpp_out=gen/ \
src/main/proto/phenopackets.proto src/main/proto/base.proto

The protoc command specifies the directory where the protobuf files are located (–proto_path), the location of the
directory to which the corresponding C++ files are to be written, and then passes the two protobuf files.

Compiling and building Phenopackets

The phenopacket code can be compiled and built using standard tools. Here we present a small example of a C++ pro-
gram that reads in a phenopacket JSON file from the command line and prints our some of the information contained
in it to the shell. The classes defined by the phenopacket are located within namespace declarations that mirror the
Java package names, and thus are extremly unlikely to collide with other C++ identifiers.

#include <iostream>
#include <string>
#include <fstream>
#include <sstream>

#include <google/protobuf/message.h>
#include <google/protobuf/util/json_util.h>

#include "phenopackets.pb.h"

using namespace std;

int main(int argc, char ** argv) {
// check that user has passed a file.
if (argc!=2) {

cerr << "usage: ./phenopacket_demo phenopacket-file.json\n";
exit(EXIT_FAILURE);

}
string fileName=argv[1];

GOOGLE_PROTOBUF_VERIFY_VERSION;

stringstream sstr;
ifstream inFile;
inFile.open(fileName);
if (! inFile.good()) {

(continues on next page)

58 Chapter 5. Working with Phenopackets

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

cerr << "Could not open Phenopacket file at " << fileName <<"\n";
return EXIT_FAILURE;

}
sstr << inFile.rdbuf();
string JSONstring = sstr.str();

::google::protobuf::util::JsonParseOptions options;
::org::phenopackets::schema::v1::Phenopacket phenopacket;
::google::protobuf::util::JsonStringToMessage(JSONstring,&phenopacket,options);
cout << "\n::: Reading Phenopacket at: " << fileName << " ::::\n\n";
cout << "\tsubject.id: "<<phenopacket.subject().id() << "\n";
// print age if available
if (phenopacket.subject().has_age_at_collection()) {

::org::phenopackets::schema::v1::core::Age age = phenopacket.subject().age_at_
→˓collection();

if (! age.age().empty()) {
cout <<"\tsubject.age: " << age.age() << "\n";

}
cout <<"\tsubject.sex: " ;
org::phenopackets::schema::v1::core::Sex sex = phenopacket.subject().sex();
switch (sex) {

case ::org::phenopackets::schema::v1::core::UNKNOWN_SEX : cout << " unknown";
→˓break;

case ::org::phenopackets::schema::v1::core::FEMALE : cout <<"female"; break;
case ::org::phenopackets::schema::v1::core::MALE: cout <<"male"; break;
case ::org::phenopackets::schema::v1::core::OTHER_SEX:
default:

cout <<"other"; break;
}
cout << "\n";

}
cout <<"\n\tPhenotypes:\n";
for (auto i = 0; i < phenopacket.phenotypes_size(); i++) {

const ::org::phenopackets::schema::v1::core::PhenotypicFeature& phenotype =
→˓phenopacket.phenotypes(i);
const ::org::phenopackets::schema::v1::core::OntologyClass type = phenotype.type();
cout << "\tid: " << type.id() << ": " << type.label() << "\n";

}
cout <<"\n";
}

The Makefile for this little program is as follows.

CXX=g++
CXXFLAGS=-Wall -g -O0 --std=c++17 -pthread
LIBS=-lprotobuf

TARGET=phenopacket_demo
all:$(TARGET)

OBJS=phenopackets.pb.o base.pb.o

$(TARGET):main.cpp $(OBJS)
$(CXX) $< $(OBJS) $(CXXFLAGS) ${LIBS} -o $@

%.o: %.cpp
$(CXX) $(CXXFLAGS) -o $@ -c $<

(continues on next page)

5.1. Example code 59

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

.PHONY: clean
clean:

rm -f $(OBJS) $(TARGET)

The executable can be generated by calling make. Running it on a simple phenopacket would lead to the following
output.

$./phenopacket_demo Gebbia-1997-ZIC3.json

::: Reading Phenopacket at: Gebbia-1997-ZIC3.json ::::

subject.id: III-1
subject.age: 7W
subject.sex: male

Phenotypes:
id: HP:0002139: Arrhinencephaly
id: HP:0001750: Single ventricle
id: HP:0001643: Patent ductus arteriosus
id: HP:0001746: Asplenia
id: HP:0004971: Pulmonary artery hypoplasia
id: HP:0001674: Complete atrioventricular canal defect
id: HP:0001669: Transposition of the great arteries
id: HP:0012890: Posteriorly placed anus
id: HP:0001629: Ventricular septal defect
id: HP:0012262: Abnormal ciliary motility
id: HP:0004935: Pulmonary artery atresia
id: HP:0003363: Abdominal situs inversus

More information about using C++ with Protobuf is available at the Protobuf website.

phenotools

A more complete C++ implementation that performs Q/C is being developed as phenotools.

5.1.3 Examples

We provide three in-depth examples of Phenopackets. Each example was generated by Java code that is available in
the src/test/org/phenopackets/schema/v1/examples directory by a method called printAsJson.

A complete example: Rare Disease

We will now present a phenopacket that represents a family with one individual affected by Bethlem myopathy.
We present each of the sections of the Phenopacket in separate subsections for legibility. Recall that JSON data is
represented as as name/value pairs that are separated by commas (we show the trailing comma on all but the last
name/value pair of the Phenopacket).

We show how to create this phenopacket in Java here.

60 Chapter 5. Working with Phenopackets

https://developers.google.com/protocol-buffers/
https://github.com/pnrobinson/phenotools
https://www.ncbi.nlm.nih.gov/pubmed/30808312

phenopackets-schema Documentation, Release 10.0.0

COL6A1 mutation leading to Bethlem myopathy with recurrent hematuria: a case report

We present an example that summarizes the data presented in a case report about a boy with Bethlem myopathy. For
simplicity’s sake, we have omitted some of the details, but it should be obvious how one would construct the full
Phenopacket.

id

The id field is an arbitrary identifier of the family. In this publication, the family is not refered to by any special name
because only one family is reported, but often one sees identifiers such as “family A”, etc.

"id": "family",

proband

This is a Phenopacket element that describes the proband in this case, a 14-year old boy.

"proband": {
"id": "14 year-old boy",
"subject": {

"id": "14 year-old boy",
"ageAtCollection": {

"age": "P14Y"
},
"sex": "MALE"

},
}

At this point in the Phenopacket element, there follows a list of phenotypic observations,

"phenotypicFeatures": [{ ... }, { ... }, (...) , { ... }]

We present each phenotype separately in the following.

The following block describes Decreased fetal movement.

{
"type": {
"id": "HP:0001558",
"label": "Decreased fetal movement"

},
"classOfOnset": {
"id": "HP:0011461",
"label": "Fetal onset"

},
"evidence": [{
"evidenceCode": {

"id": "ECO:0000033",
"label": "author statement supported by traceable reference"

},
"reference": {

"id": "PMID:30808312",
"description": "COL6A1 mutation leading to Bethlem myopathy with recurrent

→˓hematuria: a case report."

(continues on next page)

5.1. Example code 61

https://www.ncbi.nlm.nih.gov/pubmed/30808312
https://hpo.jax.org/app/browse/term/HP:0001558

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

}
}]

}

This block refers to the fact that the authors reported that “Tests of . . . cranial nerves function were normal”.

, {
"type": {
"id": "HP:0031910",
"label": "Abnormal cranial nerve physiology"

},
"negated": true,
"evidence": [{
"evidenceCode": {
"id": "ECO:0000033",
"label": "author statement supported by traceable reference"

},
"reference": {

"id": "PMID:30808312",
"description": "COL6A1 mutation leading to Bethlem myopathy with recurrent

→˓hematuria: a case report."
}

}]
}

This block refers to recurrent gross hematuria which had occured beginning six months before admission at age 14
years (We record the age as 14 years because more precise data is not presented).

{
"type": {
"id": "HP:0011463",
"label": "Macroscopic hematuria"

},
"modifiers": [{
"id": "HP:0031796",
"label": "Recurrent"

}],
"ageOfOnset": {
"age": "P14Y"

},
"evidence": [{
"evidenceCode": {
"id": "ECO:0000033",
"label": "author statement supported by traceable reference"

},
"reference": {

"id": "PMID:30808312",
"description": "COL6A1 mutation leading to Bethlem myopathy with recurrent

→˓hematuria: a case report."
}

}]
},

Finally, this block describe mild motor delay in childhood.

{

(continues on next page)

62 Chapter 5. Working with Phenopackets

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

"type": {
"id": "HP:0001270",
"label": "Motor delay"

},
"severity": {

"id": "HP:0012825",
"label": "Mild"

},
"classOfOnset": {

"id": "HP:0011463",
"label": "Childhood onset"

}
}],
"variants": [{
"hgvsAllele": {
"hgvs": "NM_001848.2:c.877G\u003eA"

},
"zygosity": {

"id": "GENO:0000135",
"label": "heterozygous"

}
}]

}

relatives

Each of the relatives can be added as a Phenopacket. In this case, we add Phenopackets for the mother and father, both
of whom are health. Therefore, the corresponding phenopackets only have fields for id and sex.

"relatives": [{
"subject": {
"id": "MOTHER",
"sex": "FEMALE"

}
}, {

"subject": {
"id": "FATHER",
"sex": "MALE"

}
}],

pedigree

The Pedigree object represents the information that is typically included in a PED file. It is important that the identifiers
are the same as those used for the Phenopackets.

"pedigree": {
"persons": [{
"individualId": "14 year-old boy",
"paternalId": "FATHER",
"maternalId": "MOTHER",
"sex": "MALE",
"affectedStatus": "AFFECTED"

(continues on next page)

5.1. Example code 63

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

}, {
"individualId": "MOTHER",
"sex": "FEMALE",
"affectedStatus": "UNAFFECTED"

}, {
"individualId": "FATHER",
"sex": "MALE",
"affectedStatus": "UNAFFECTED"

}]
},

metaData

The MetaData is required to provide details about all of the ontologies and external references used in the Phenopacket.

"metaData": {
"created": "2019-04-04T13:49:22.827Z",
"createdBy": "Peter R.",
"resources": [{
"id": "hp",
"name": "human phenotype ontology",
"url": "http://purl.obolibrary.org/obo/hp.owl",
"version": "2018-03-08",
"namespacePrefix": "HP",
"iriPrefix": "http://purl.obolibrary.org/obo/HP_"

}, {
"id": "geno",
"name": "Genotype Ontology",
"url": "http://purl.obolibrary.org/obo/geno.owl",
"version": "19-03-2018",
"namespacePrefix": "GENO",
"iriPrefix": "http://purl.obolibrary.org/obo/GENO_"

}, {
"id": "pubmed",
"name": "PubMed",
"namespacePrefix": "PMID",
"iriPrefix": "https://www.ncbi.nlm.nih.gov/pubmed/"

}],
"externalReferences": [{
"id": "PMID:30808312",
"description": "Bao M, et al. COL6A1 mutation leading to Bethlem myopathy with

→˓recurrent hematuria: a case report. BMC Neurol. 2019;19(1):32."
}]

}

A complete example: Oncology

We will now present a phenopacket that represents a case of an individual with bladder cancer. We present each
of the sections of the Phenopacket in separate subsections for legibility. Recall that JSON data is represented as as
name/value pairs that are separated by commas (we show the trailing comma on all but the last name/value pair of the
Phenopacket).

64 Chapter 5. Working with Phenopackets

phenopackets-schema Documentation, Release 10.0.0

Infiltrating urothelial carcinoma: A case report

We here present a case report about an individual with infiltrating urothelial carcinoma (NCIT:C39853). Three somatic
variants were identified in this sample which are judged to be related to tumorigenesis. Additionally, a secondary
finding of prostate carcinoma is made. The two distal ureter segments are found to be cancer-free. A pelvic lymph
node is found to have a metastasis, but no molecular investigation was made. The patient was found to have two
clinical abnormalities, hematuria (blood in the urine) and dysuria (painful urination).

In this example, we imagine that whole genome sequencing was performed on the infiltrating urothelial carcinoma
as well as on the metastasis in the pelvic lymph node. A paired normal germline sample was also sequenced. All
three files are located on some local file system, and this Phenopacket is used to organize the information about the
diagnosis and phenotypes of the cancer in a way that would be able to support analysis of the WGS data. In a larger
study, one such Phenopacket could organize the information for each of thousands of patients.

id

The id field is an arbitrary but required value.

"id": "example case",

subject

The subject block is an Individual element. The id can be arbitrary identifiers (id is required).

"subject": {
"id": "patient1",
"dateOfBirth": "1964-03-15T00:00:00Z",
"sex": "MALE",
"karyotypicSex": "UNKNOWN_KARYOTYPE"

},

phenotypicFeatures

This field can be used to represent clinical manifestations using the phenotype element. Phenotypes directly related to
the biopsied or extirpated tumor specimens should be reported in the Biosample element (see below). In this example,
the patient is found to have Hematuria and severe Dysuria.

"phenotypicFeatures": [{
"type": {

"id": "HP:0000790",
"label": "Hematuria"

},
}, {
"type": {

"id": "HP:0100518",
"label": "Dysuria"

},
"severity": {

"id": "HP:0012828",
"label": "Severe"

},
}],

5.1. Example code 65

https://hpo.jax.org/app/browse/term/HP:0000790
https://hpo.jax.org/app/browse/term/HP:0100518

phenopackets-schema Documentation, Release 10.0.0

biosamples

This is a list of Biosample elements that describe the evaluation of pathological examination of tumor specimens. We
will present each Biosample in turn. The entire collection of biosamples is represented as follows.

"biosamples": [{ ... }, { ... }, {....}],

biosample 1: Infiltrating Urothelial Carcinoma

The first biosample is a biopsy taken from the wall of the urinary bladder. The histologuical diagnosis is represented
by a National Cancer Institute’s Thesaurus code. This is a primary malignant neoplasm with stage T2bN2. A VCF
file representing a paired normal germline sample is located at /data/genomes/urothelial_ca_wgs.vcf.
gz on the file system. In order to specify the procedure used to remove the bladder and prostate gland, we use the
NCIT term for Radical Cystoprostatectomy (defined as the simultaneous surgical resection of the urinary bladder and
prostate gland with pelvic lymphadenectomy).

{
"id": "sample1",
"individualId": "patient1",
"description": "",
"sampledTissue": {

"id": "UBERON_0001256",
"label": "wall of urinary bladder"

},
"ageOfIndividualAtCollection": {

"age": "P52Y2M"
},
"histologicalDiagnosis": {

"id": "NCIT:C39853",
"label": "Infiltrating Urothelial Carcinoma"

},
"tumorProgression": {

"id": "NCIT:C84509",
"label": "Primary Malignant Neoplasm"

},
"procedure": {

"code": {
"id": "NCIT:C5189",
"label": "Radical Cystoprostatectomy"
}

},
"htsFiles": [{

"uri": "file://data/genomes/urothelial_ca_wgs.vcf.gz",
"description": "Urothelial carcinoma sample",
"htsFormat": "VCF",
"genomeAssembly": "GRCh38",
"individualToSampleIdentifiers": {

"sample1": "BS342730"
}

}],
"isControlSample": false

}

66 Chapter 5. Working with Phenopackets

http://purl.obolibrary.org/obo/NCIT_C51899

phenopackets-schema Documentation, Release 10.0.0

Biosample 2: Prostate Acinar Adenocarcinoma

Prostate adenocarcinoma was discovered as an incidental finding. The tumor was found to have a Gleason score of 7.

{
"id": "sample2",
"individualId": "patient1",
"sampledTissue": {

"id": "UBERON:0002367",
"label": "prostate gland"

},
"ageOfIndividualAtCollection": {

"age": "P52Y2M"
},
"histologicalDiagnosis": {

"id": "NCIT:C5596",
"label": "Prostate Acinar Adenocarcinoma"

},
"tumorProgression": {

"id": "NCIT:C95606",
"label": "Second Primary Malignant Neoplasm"

},
"tumorGrade": {

"id": "NCIT:C28091",
"label": "Gleason Score 7"

},
"procedure": {

"code": {
"id": "NCIT:C15189",
"label": "Biopsy"

}
},
"isControlSample": false

}

Biosample 3: Left ureter

A biopsy of the left ureter reveal normal findings.

{
"id": "sample3",
"individualId": "patient1",
"sampledTissue": {

"id": "UBERON:0001223",
"label": "left ureter"

},
"ageOfIndividualAtCollection": {

"age": "P52Y2M"
},
"histologicalDiagnosis": {

"id": "NCIT:C38757",
"label": "Negative Finding"

},
"procedure": {

"code": {
"id": "NCIT:C15189",

(continues on next page)

5.1. Example code 67

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

"label": "Biopsy"
}

},
"isControlSample": false

}

Biosample 4: Right ureter

A biopsy of the right ureter reveal normal findings.

{
"id": "sample4",
"individualId": "patient1",
"sampledTissue": {

"id": "UBERON:0001222",
"label": "right ureter"

},
"ageOfIndividualAtCollection": {

"age": "P52Y2M"
},
"histologicalDiagnosis": {

"id": "NCIT:C38757",
"label": "Negative Finding"

},
"procedure": {

"code": {
"id": "NCIT:C15189",
"label": "Biopsy"

}
},
"isControlSample": false

}

Biosample 4: Pelvic lymph node

A biopsy of a pelvic lymph node revealed a metastasis. A reference to a somatic genome sequence file is provided.

{
"id": "sample5",
"individualId": "patient1",
"sampledTissue": {

"id": "UBERON:0015876",
"label": "pelvic lymph node"

},
"ageOfIndividualAtCollection": {

"age": "P52Y2M"
},
"tumorProgression": {

"id": "NCIT:C3261",
"label": "Metastatic Neoplasm"

},
"procedure": {

"code": {

(continues on next page)

68 Chapter 5. Working with Phenopackets

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

"id": "NCIT:C15189",
"label": "Biopsy"

}
},
"htsFiles": [{
"uri": "file://data/genomes/metastasis_wgs.vcf.gz",
"description": "lymph node metastasis sample",
"htsFormat": "VCF",
"genomeAssembly": "GRCh38",
"individualToSampleIdentifiers": {

"sample5": "BS730275"
}

}],
"isControlSample": false

}

genes and variants

These elements of the Phenopacket are empty. One could have used them to specify that a certain gene or variant
was identified that was inferred to be related to the tumor specimen (for instance, a germline mutation in a cancer
susceptibility gene).

diseases

We recommend using the National Cancer Institute’s Thesaurus codes to represent cancer diagnoses, but any relevant
ontology term can be used. Information about tumor staging should be added here. See Disease for details.

{
"diseases": [{
"term": {

"id": "NCIT:C39853",
"label": "Infiltrating Urothelial Carcinoma"

},
"diseaseStage": [{

"id": "NCIT:C27971",
"label": "Stage IV"

}],
"tnmFinding": [{
"id": "NCIT:C48766",
"label": "pT2b Stage Finding"

}, {
"id": "NCIT:C48750",
"label": "pN2 Stage Finding"

}, {
"id": "NCIT:C48700",
"label": "M1 Stage Finding"

}]
}]

}

5.1. Example code 69

phenopackets-schema Documentation, Release 10.0.0

htsFiles

This is a reference to the paired normal germline sample.

{
"htsFiles": [{

"uri": "file://data/genomes/germline_wgs.vcf.gz",
"description": "Matched normal germline sample",
"htsFormat": "VCF",
"genomeAssembly": "GRCh38",
"individualToSampleIdentifiers": {
"patient1": "NA12345"

}
}],

}

metaData

The MetaData is required to provide details about all of the ontologies and external references used in the Phenopacket.

{
"metaData": {

"created": "2019-04-03T15:31:40.765Z",
"createdBy": "Peter R",
"submittedBy": "Peter R",
"resources": [{

"id": "hp",
"name": "human phenotype ontology",
"namespacePrefix": "HP",
"url": "http://purl.obolibrary.org/obo/hp.owl",
"version": "2019-04-08",
"iriPrefix": "http://purl.obolibrary.org/obo/HP_"
}, {
"id": "uberon",
"name": "uber anatomy ontology",
"namespacePrefix": "UBERON",
"url": "http://purl.obolibrary.org/obo/uberon.owl",
"version": "2019-03-08",
"iriPrefix": "http://purl.obolibrary.org/obo/UBERON_"
}, {
"id": "ncit",
"name": "NCI Thesaurus OBO Edition",
"namespacePrefix": "NCIT",
"url": "http://purl.obolibrary.org/obo/ncit.owl",
"version": "18.05d",
"iriPrefix": ""
}],

"externalReferences": [{
"id": "PMID:29221636",
"description": "Urothelial neoplasms in pediatric and young adult

→˓patients: A large single-center series"
}]

}
}

The Java code that was used to create this example is explained here.

70 Chapter 5. Working with Phenopackets

phenopackets-schema Documentation, Release 10.0.0

Each example has a corresponding explanation of how to create the Phenopacket using Java.

Rare Disease

This page explains the Java code that was used to generate A complete example: Rare Disease. The complete code is
available in the src/test package of this repository in the class BethlemMyopathyExample.

Builders and Short cuts

The individual elements of a Phenopacket are constructed with functions provided by the protobuf framework. These
functions use the Builder pattern. For instance, to create an OntologyClass object, we use the following code.

OntologyClass hematuria = OntologyClass.newBuilder()
.setId("HP:0000790")
.setLabel("Hematuria")
.build();

Developers may find it easier to define convenience functions that wrap the builders. For instance, for the Ontology-
Class example, we might define the following function.

public static OntologyClass ontologyClass(String id, String label) {
return OntologyClass.newBuilder()

.setId(id)

.setLabel(label)

.build();
}

We will use the ontologyClass function in our examples, but otherwise show all steps for clarity.

Family members and variants

We define the names of the family members and also an object to represent the variant that was found to occur in a de
novo fashion in the son.

private static final String PROBAND_ID = "14 year-old boy";
private static final String MOTHER_ID = "MOTHER";
private static final String FATHER_ID = "FATHER";

// Allele
private static final HgvsAllele c_877G_to_A = HgvsAllele.

newBuilder().
setHgvs("NM_001848.2:c.877G>A").
build();

// Corresponding variant
private static final Variant heterozygousCOL6A1Variant = Variant.newBuilder()

.setHgvsAllele(c_877G_to_A)

.setZygosity(ontologyClass("GENO:0000135", "heterozygous"))

.build();

Proband

The following function then creates the Proband object. Note how we create OntologyClass objects for onset and
severity modifiers, and create an Evidence object that indicates the provenance of the data.

5.1. Example code 71

phenopackets-schema Documentation, Release 10.0.0

static Phenopacket proband() {

OntologyClass mild = OntologyClass.
newBuilder().
setId("HP:0012825").
setLabel("Mild").
build();

OntologyClass evidenceCode = OntologyClass.newBuilder().
setId("ECO:0000033").
setLabel("author statement supported by traceable reference").
build();

Evidence citation = Evidence.newBuilder().
setReference(ExternalReference.newBuilder().

setId("PMID:30808312").
setDescription("COL6A1 mutation leading to Bethlem myopathy

→˓with recurrent hematuria: a case report.").
build()).

setEvidenceCode(evidenceCode)
.build();

PhenotypicFeature decreasedFetalMovement = PhenotypicFeature.newBuilder()
.setType(ontologyClass("HP:0001558", "Decreased fetal movement"))
.setClassOfOnset(ontologyClass("HP:0011461", "Fetal onset"))
.addEvidence(citation)
.build();

PhenotypicFeature absentCranialNerveAbnormality = PhenotypicFeature.
→˓newBuilder()

.setType(ontologyClass("HP:0031910", "Abnormal cranial nerve physiology
→˓"))

.setAbsent(true)

.addEvidence(citation)

.build();
PhenotypicFeature motorDelay = PhenotypicFeature.newBuilder()

.setType(ontologyClass("HP:0001270","Motor delay"))

.setClassOfOnset(ontologyClass("HP:0011463","Childhood onset"))

.setSeverity(mild)

.build();
PhenotypicFeature hematuria = PhenotypicFeature.newBuilder()

.setType(ontologyClass("HP:0011463", "Macroscopic hematuria"))

.setAgeOfOnset(Age.newBuilder().setAge("P14Y").build())

.addModifiers(ontologyClass("HP:0031796","Recurrent"))

.addEvidence(citation)

.build();

Individual proband = Individual.newBuilder()
.setSex(Sex.MALE)
.setId(PROBAND_ID)
.setAgeAtCollection(Age.newBuilder().setAge("P14Y").build())
.build();

return Phenopacket.newBuilder()
.setId(PROBAND_ID)
.setSubject(proband)
.addPhenotypicFeatures(decreasedFetalMovement)
.addPhenotypicFeatures(absentCranialNerveAbnormality)
.addPhenotypicFeatures(hematuria)
.addPhenotypicFeatures(motorDelay)
.addVariants(heterozygousCOL6A1Variant)

(continues on next page)

72 Chapter 5. Working with Phenopackets

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

.build();
}

Unaffected parents

The unaffected father is coded as follows:

static Phenopacket unaffectedFather() {
Individual father = Individual.newBuilder()

.setSex(Sex.MALE)

.setId(FATHER_ID)

.build();
return Phenopacket.newBuilder()

.setSubject(father)

The mother is coded analogously. Note that in both cases, on two of the elements of the Phenopacket are actually
used.

Pedigree

The following code builds the Pedigree object.

private static Pedigree pedigree() {
Pedigree.Person pedProband = Pedigree.Person.newBuilder()

.setIndividualId(PROBAND_ID)

.setSex(Sex.MALE)

.setMaternalId(MOTHER_ID)

.setPaternalId(FATHER_ID)

.setAffectedStatus(Pedigree.Person.AffectedStatus.AFFECTED)

.build();

Pedigree.Person pedMother = Pedigree.Person.newBuilder()
.setIndividualId(MOTHER_ID)
.setSex(Sex.FEMALE)
.setAffectedStatus(Pedigree.Person.AffectedStatus.UNAFFECTED)
.build();

Pedigree.Person pedFather = Pedigree.Person.newBuilder()
.setIndividualId(FATHER_ID)
.setSex(Sex.MALE)
.setAffectedStatus(Pedigree.Person.AffectedStatus.UNAFFECTED)
.build();

return Pedigree.newBuilder()
.addPersons(pedProband)
.addPersons(pedMother)
.addPersons(pedFather)
.build();

}

5.1. Example code 73

phenopackets-schema Documentation, Release 10.0.0

Family

Finally, the following code pulls everything together to build the Family object.

Note that we use System.currentTimeMillis() to get the current time (when we are creating and submitting
this Phenopacket).

A complete example in Java: Oncology

This example shows how to create the Phenopacket that was explained here.

subject

We create an object to represent the proband as an Individual.

private Individual subject() {
return Individual.newBuilder()

.setId(this.patientId)

.setDatasetId("urology cohort")

.setSex(Sex.MALE)

.setDateOfBirth(Timestamp.newBuilder()
.setSeconds(Instant.parse("1964-03-15T00:00:00Z").

→˓getEpochSecond()))
.build();

}

phenotypicFeatures

There are two categories of phenotypes that can be of interest with cancer data. Firstly, there are constitutional
phenotypes such as weight loss that are related to the disease of cancer. Second, the tumor, and is applicable metasases,
each have their own phenotypes including histology and grade. The Phenopacket standard represents constitutional
Phenotypes using a list of rstphenotype elements, and represents phenotypes of the tumor and metastases in Biosample
elements. In the present case, the patient was found to have hematuria and severe dysuria, which are coded as follows.

PhenotypicFeature hematuria = PhenotypicFeature.newBuilder().
setType(ontologyClass("HP:0000790","Hematuria")).
build();

PhenotypicFeature dsyuria = PhenotypicFeature.newBuilder().
setType(ontologyClass("HP:0100518","Dysuria")).
setSeverity(ontologyClass("HP:0012828","Severe")).
build();

HtsFile

We use three HtsFile objects in this Phenopacket. One represents the pair normal germline whole-genome sequence
(WGS) VCF file, one one each represents somatic WGS data from the bladder carcinoma specimen and from the
metastasis specimen. All three packets are created analogously. Here is the code for the bladder carcinoma WGS file.

public HtsFile createSomaticHtsFile() {
// first create a File
// We are imagining there is a reference to a VCF file for a normal germline

→˓genome seqeunce
(continues on next page)

74 Chapter 5. Working with Phenopackets

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

String path = "/data/genomes/urothelial_ca_wgs.vcf.gz";
String description = "Urothelial carcinoma sample";
File file = File.newBuilder().setPath(path).setDescription(description).build();
// Now create an HtsFile object
return HtsFile.newBuilder().

setHtsFormat(HtsFile.HtsFormat.VCF).
setGenomeAssembly("GRCh38").
setFile(file).
build();

}

biosamples

This example Phenopacket contains five Biosample objects, each of which is constructed using a function similar to
the following code, which represents the bladder carcinoma specimen.

private Biosample bladderBiosample() {
String sampleId = "sample1";
// left wall of urinary bladder
OntologyClass sampleType = ontologyClass("UBERON_0001256", "wall of urinary

→˓bladder");
Biosample.Builder biosampleBuilder = biosampleBuilder(patientId, sampleId, this.

→˓ageAtBiopsy, sampleType);
// also want to mention the procedure, Prostatocystectomy (NCIT:C94464)
//Infiltrating Urothelial Carcinoma (Code C39853)
OntologyClass infiltratingUrothelialCarcinoma = ontologyClass("NCIT:C39853",

→˓"Infiltrating Urothelial Carcinoma");
biosampleBuilder.setHistologicalDiagnosis(infiltratingUrothelialCarcinoma);
// A malignant tumor at the original site of growth
OntologyClass primary = ontologyClass("NCIT:C84509", "Primary Malignant Neoplasm

→˓");
biosampleBuilder.setTumorProgression(primary);
biosampleBuilder.addHtsFiles(HtsFileTest.createSomaticHtsFile());
biosampleBuilder.setProcedure(Procedure.newBuilder().setCode(ontologyClass(

→˓"NCIT:C15189", "Biopsy")).build());
return biosampleBuilder.build();

}

Normal findings

In the biosamples for the left and right ureter, normal findings were obtains. This is represented by an OntologyClass
for normal (negative) findings. We recommend using the following term from NCIT.

OntologyClass normalFinding = ontologyClass("NCIT:C38757", "Negative Finding");

This is used to create a “normal” Biosample object as follows.

private Biosample leftUreterBiosample() {
String sampleId = "sample3";
OntologyClass sampleType = ontologyClass("UBERON:0001223", "left ureter");
Biosample.Builder biosampleBuilder = biosampleBuilder(patientId, sampleId, this.

→˓ageAtBiopsy, sampleType);
OntologyClass normalFinding = ontologyClass("NCIT:C38757", "Negative Finding");

(continues on next page)

5.1. Example code 75

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

biosampleBuilder.setHistologicalDiagnosis(normalFinding);
biosampleBuilder.setProcedure(Procedure.newBuilder().setCode(ontologyClass(

→˓"NCIT:C15189", "Biopsy")).build());
return biosampleBuilder.build();

}

diseases

We recommend using the National Cancer Institute’s Thesaurus codes to represent cancer diagnoses, but any relevant
ontology term can be used. The following Java code creates a Disease object.

private Disease infiltratingUrothelialCarcinoma() {
return Disease.newBuilder()

.setTerm(ontologyClass("NCIT:C39853", "Infiltrating Urothelial Carcinoma"))
// Disease stage here is calculated based on the TMN findings
.addDiseaseStage(ontologyClass("NCIT:C27971", "Stage IV"))
// The tumor was staged as pT2b, meaning infiltration into the outer muscle

→˓layer of the bladder wall
// pT2b Stage Finding (Code C48766)
.addTnmFinding(ontologyClass("NCIT:C48766", "pT2b Stage Finding"))
// pN2 Stage Finding (Code C48750)
// cancer has spread to 2 or more lymph nodes in the true pelvis (N2)
.addTnmFinding(ontologyClass("NCIT:C48750", "pN2 Stage Finding"))
// M1 Stage Finding
// the tumour has spread from the original site (Metastatic Neoplasm in

→˓lymph node - sample5)
.addTnmFinding(ontologyClass("NCIT:C48700", "M1 Stage Finding"))
.build();

}

Metadata

The MetaData section MUST indicate all ontologies used in the phenopacket together with their versions. This
Phenopacket used HPO, UBERON, and NCIT. We additionally use a Timestamp (Java) object to indicate the current
time (at which we are creating this Phenopacket).

private MetaData buildMetaData() {
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)

.setNanos((int) ((millis % 1000) * 1000000)).build();
return MetaData.newBuilder()

.addResources(Resource.newBuilder()
.setId("hp")
.setName("human phenotype ontology")
.setNamespacePrefix("HP")
.setIriPrefix("http://purl.obolibrary.org/obo/HP_")
.setUrl("http://purl.obolibrary.org/obo/hp.owl")
.setVersion("2019-04-08")
.build())

.addResources(Resource.newBuilder()
.setId("uberon")
.setName("uber anatomy ontology")
.setNamespacePrefix("UBERON")

(continues on next page)

76 Chapter 5. Working with Phenopackets

phenopackets-schema Documentation, Release 10.0.0

(continued from previous page)

.setIriPrefix("http://purl.obolibrary.org/obo/UBERON_")

.setUrl("http://purl.obolibrary.org/obo/uberon.owl")

.setVersion("2019-03-08")

.build())
.addResources(Resource.newBuilder()

.setId("ncit")

.setName("NCI Thesaurus OBO Edition")

.setNamespacePrefix("NCIT")

.setUrl("http://purl.obolibrary.org/obo/ncit.owl")

.setVersion("18.05d")

.build())
.setCreatedBy("Peter R")
.setCreated(timestamp)
.setSubmittedBy("Peter R")
.addExternalReferences(ExternalReference.newBuilder()

.setId("PMID:29221636")

.setDescription("Urothelial neoplasms in pediatric and young
→˓adult patients: A large single-center series")

.build())
.build();

}

Putting it all together

Finally, we utilize a Phenopacket builder to generate the complete Phenopacket object.

Phenopacket phenopacket = Phenopacket.newBuilder()
.setId("example case")
.setSubject(subject())
.addPhenotypes(hematuria)
.addPhenotypes(dsyuria)
.addBiosamples(bladderBiosample())
.addBiosamples(prostateBiosample())
.addBiosamples(leftUreterBiosample())
.addBiosamples(rightUreterBiosample())
.addBiosamples(pelvicLymphNodeBiosample())
.addDiseases(infiltratingUrothelialCarcinoma())
.addHtsFiles(createNormalGermlineHtsFile())
.setMetaData(metaData)
.build();

Output of data

There are many ways of outputting the Phenopacket in JSON format. See Exporting and Importing Phenopackets for
details. The following line will output the entire Phenopacket to STDOUT including empty fields.

System.out.println(JsonFormat.printer().includingDefaultValueFields().
→˓print(phenopacket));

5.1. Example code 77

phenopackets-schema Documentation, Release 10.0.0

5.2 Security disclaimer

A stand-alone security review has been performed on the specification itself, however these example implementations
are offered as-is, and without any security guarantees. They will need an independent security review before they can
be considered ready for use in security-critical applications. If you integrate this code into your application it is AT
YOUR OWN RISK AND RESPONSIBILITY to arrange for an audit.

78 Chapter 5. Working with Phenopackets

	Introduction to Phenopackets
	What is a Phenopacket?
	Requirement Levels
	Ontologies
	A short introduction to protobuf
	FHIR Implementation Guide

	Phenopacket Schema
	Overview

	Top-Level Elements
	Phenopacket
	Family
	Cohort
	Interpretation

	Phenopacket building blocks
	Age
	AgeRange
	Biosample
	Disease
	Evidence
	ExternalReference
	Gene
	HtsFile
	Individual
	KaryotypicSex
	MetaData
	OntologyClass
	Pedigree
	PhenotypicFeature
	Procedure
	Resource
	Sex
	Variant

	Working with Phenopackets
	Example code
	Security disclaimer

